
UIDS as Internal Names in a Distributed File System

Paul d. Leach, Bernard L. Stumpf,
James A. Hamilton, and Paul H. Levine

Apollo Computer, Inc.
19 Alpha Road, Chelmsford, MA 01824

Abstract

The use of UIDs as internal names in an operating
system for a local network is discussed. The use
of internal names in other distributed systems is
briefly surveyed. For this system, UIDs were
chosen because of their intrinsic location
independence and because they seemed to lend
themselves to a clean structure for the operating
system nucleus. The problems created by UIDs
were: generating UIDs; locating objects;
supporting multiple versions of objects;
replicating objects; and losing objects. Some
solutions to these problems are presented; for
others, no satisfactory solution has yet been
implemented.

I. Introduction

Although the area of distributed systems is a
relatively new one, there are already many
examples of implemented distributed operating
systems for local networks and their attendant
file systems. Many of these systems have chosen
to use internal names for the objects they
support, into which user visible text string
names are mapped. Among the most popular forms
of internal name have been unique identifiers
(UIDs); however, there has been little in the
literature discussing the motivation for choosing
one form of name over another, or the
consequences of a choice once made. This paper
presents the experiences that resulted from using
UIDs as internal names in one particular
distributed system: the Aegis operating system
for the Apollo DOMAIN network [APOL 81, NELS
81].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-081-8/82/008/0034 $00.75

i.i. 9rganization

The rest of this paper is organized as follows.
Section 2 discusses internal names as they are
used in several other distributed systems.
Section 3 presents an overview of the DOMAIN
system envirorment, and of the nature of UIDs and
objects in Aegis. Section 4 deals with the
motivations and perceived advantages that led us
to choose UIDs. Section 5 deals with the problems
we foresaw or discovered in the process of
implementing the system, and presents some
solutions to these problems. Section 6 offers
some final observations and conclusions.

2. Internal names in other systems

Given that one decides to use internal names,
there seem to be just two fundamental
alternatives: to use UIDs or "structured names".
UIDs can be thought of as simply large integers
or long bit strings, although some other
information may be encoded within them. The
important characteristic is that they are large
enough that the same UID will never refer to two
different objects at the same time. Structured
names, as in [SVOB 79], contain more than one
component, some of which are used to indicate the
location of, or route to, the object named.
However, individual Components may be unique for
all time only within the context of the other
components; some systems with this property have
called their internal names UIDs. This section
briefly indicates the internal naming schemes
used by several distributed systems or their
distributed file system components.

~.i. WF~

The Woodstock File Server (WFS) [SWIN 79] uses
"file identifiers" (FIDs) to name files. FIDs
are 32 bit unsigned integers, which are unique
for all time within a individual WFS server, but
may be duplicated across servers. Thus, it is up
to each WFS client to remember the server
associated with each FID. The combination of
server name and FID is a form of structured
name. The mapping from FID to physical disk
addresses is via a hash table.

34

2.2. Pilot

Pilot [REDE 80] uses "universal identifiers
(UIDs)" to name files; they are 64 bits long and
"guaranteed unique in both space and time". UIDs
were chosen so that removable volumes could be
transported between machines without fear of
conflict. A B-tree is used to map UIDs to
physical disk addresses.

2.~. DFS

The distributed file system (DFS) [STUB 80] also
uses UIDs. We suspect that they are really UIDs
because the implementors provide "a simple
locating service" to help find the server which
holds a file, given only its UID; a structured
name would not need a locating service. Like
Pilot, a B-tree is used to map UIDs to physical
disk addresses.

2.A. c~s

The Cambridge File Server (CFS) [DION 80] uses
what it calls UIDs to name files. They are 64
bits long; 32 bits are a random number, and 32
bits contain the disk address of the obJect's
descriptor. The use of garbage collection [GARN
80] guarantees that an object will not be deleted
while a reference to it exists, and therefore
that, within a single server, a UID can never
refer to more than one object. However, it seems
that UIDs can be duplicated on different servers,
although the 32 bit random number makes it highly
improbable.

2.A. Felix

The Felix File Server [FRID 81] uses a system
generated "File Identifier" (FID) to name files.
AN FID is a "universal access capability" for the
file it names. When the file is deleted, its PID
is guaranteed not to be reused for a certain
period of time. It also seems that FIDs with the
same numerical value can be in use by more than
one server at the same time.

2.~. LOCUS

The LOCUS system [POPE 81] uses structured
internal names. A name is a pair "<file group
number, file descriptor number>". The file group
number can be thought of as uniquely identifying
a logical volume. The file descriptor number is
an index into a per-file-group array of file
descriptors; it is unique within a file group as
long as any references to the file it identifies
exist. The choice of internal name seems to have
been motivated by UNIX (TM, Bell Laboratories)
compatibility constraints: directory structures
are visible to application programs and contain
file descriptor numbers, which are relative to
the file group containing the directory.

2.1- Others

There are a number of other recent
implementations of, or designs for, distributed
systems for which descriptions have been
published: S/F-UNIX [LUDE 81]; ACCENT [RASH 81];
TRIX [WARD 80, CLAR 81]; EDEN [LAZO 81].

However, they concentrate on other aspects of
distributed systems design, and do not provide
much information on t~eir use of internal names.

2.8. Summary

When the design of Aegis began in early 1980,
there were fewer examples of distributed systems
to study; Pilot and WFS particularly influenced
us. Pilot uses UIDs; WFS uses IDs which are
unique within a single file server, but which
require its clients to remember upon which server
files reside. From our studies we got little
motivation for either choice; yet upon starting
our design it became clear that there were
non-trlvial problems involved with either
choice.

3- DOMAIN system environment

~.I. Hardware

A DOMAIN system consists of a collection of
powerful personal computers (nodes) connected
together by a high speed (12 megabit/second)
local network. Each node has a 'tick, time [LAMP
80] of 1.25 microseconds and can have up to 3.5
megabytes of main memory. Most nodes have 33
megabytes of disk storage and a I megabyte floppy
disk, but no disk storage is required for a node
to operate. A bit mapped display has 800 by 1024
pixels, and a bi~ BLT (block transfer) to move
arbitrary rectangular areas at high speed. The
display is allocated into windows (called PADs)
which are a form of virtual terminal [LANT 79];
multiple concurrent processes, each possessing
its own wlndow(s), can be controlled by the user
simultaneously. Dynamic address translation
hardware allows each process to address 16
megabytes of demand paged virtual memory. The
network arbitrates access using a token passing
method; each node's network controller provides a
unique node ID which is assigned at the factory
and contained in the controller's microcode
PROMs.

~.2. System usage characteristics

It is expected that the nodes in a network will
be owned by many organizations, with each
organization owning many nodes. One organization
is likely to be chartered to provide computing
related services and resources to the entire
network community. Within an organization, a
high degree of cooperation will be desired; while
between organizations, a higher degree of
autonomy will be preferred; and the service
organization wants resource sharing, protection
and (perhaps) accountability. Aegis provides
tools to allow a high degree of cooperation, and
tools to create policies which can allow a high
degree of autonomy. This results in an
envlrom~ent of "policy parameterized autonomy".

~.~. Objects and UIDs

At the highest level,
"object-orlented" system, and
by UIDs. Objects are typed

Aegis is an
objects are named
and protected:

35

associated with each object is the UID of an
access control list, the UID of a type
descriptor, as well as a physical storage
descriptor, and some other attributes. Supported
objects include: alphanumeric text, record
structured data, IPC mailboxes, executable
modules, directories, access control lists,
serial I/O ports, magnetic tape drives, and
display bit maps. UIDs are also used to identify
persons, projects, and subsystems for protection
purposes.

Aegis UIDs are 64 bit structures, containing a
36 bit creation time, a 20 bit node ID, and 8
other bits whose use is described later. UIDs
possess the addressing aspects of a capability,
but without the protections aspects [FABR 74].
Or, a UID can be thought of as the absolute
address of an object in a 64 bit address space.
The hardware does not support this form of
address, so programs access objects by presenting
a UID and asking for the object it names to be
"mapped" into the program's hardware processor
address space (see [REDE 80] on the desirability
of mapping in distributed systems). After that,
they are accessed via virtual memory paging: not
to create shared memory semantics, but as a form
of lazy evaluation, since only the needed
portions of objects are actually fetched from
disk or over the network.

The system provides a high degree of netwopk
transcarencv in accessing objects. The mapping
operation is independent of whether the UID is
for a remote or local object. As long as
programs assume that their objects are not local,
and hence operations on them are subject to
communication failures, they need not be aware of
their location (see [POPE 81] for a discussion).

~.~ Naming objects

Text string names for objects are provided by a
directory subsystem layered on top of the Aegis
nucleus. The name space is a hierarchical tree,
like Multics [ORGA 72] or UNIX [RITC 74], with
directories at the nodes and other objects at the
leaves. Each directory is primarily a simple set
of associations between comoonent ~ame~ (strings)
and UIDs. The ~bsolute path name of an object
is an ordered list of component names. All but
(possibly) the last are names of directories,
which, when resolved starting from a network-wlde
distinguished "root" directory, lead to the UID
of the object. Thus, an absolute path name, like
a UID, is valid throughout the entire network,
an@ denotes just one object.

4. M o t i v a t i o n f o r u s i n g UIDs

There were several main reasons for choosing UIDs
as internal names. First, we wanted location
independence: to divorce the internal name of an
object from its location in the network. Second,
we wanted absolute internal names: ones that
could be passed from process to process, and from
node to node, without having to be relocated at
each step. Third, we wanted to separate text
string naming from internal naming, in order to
remove string name management from the nucleus.

Fourth, we wanted a uniform way of naming all
objects in the system. Fifth, we wanted to be
able to construct composite objects (objects
which refer to other objects) easily, and to
allow user programs to do likewise. Sixth, we
wanted to allow for typing of objects, and in a
potentially extensible and manageable way.

We wanted objects to be able to move without
having to find and alter all references to them.
The system does not move objects except when
explicitly directed to do so. However, users may
want to move dlsmountable volumes from one node
to another, or to move a peripheral from a
disabled node to a functioning one. Structured
names imply locations, which makes moving an
object harder, because references to the moved
object have to be updated; this in turn mitigates
against composite objects. UIDs, because of
their location independence, have no such
problem.

From an implementation point of view, we
wanted to be able to start with simple object
locating algorithms, perhaps with restrictions
placed on object locations, and work up to better
ones, again without changing any stored data.
Structured names seemed to freeze this decision
too early: the locating scheme is bound into the
name. We also wanted to avoid the proliferation
of ad hoc internal names by having a single,
simple, cheap, uniformly applicable naming scheme
available at all but the lowest levels of the
system.

Text string names can also be made location
independent, but we wanted the nucleus interface
to be simpler than string names. Also, string
names are too long to be embedded in objects, too
expensive to resolve, and therefore can usually
be used only at fairly high levels in the
system.

SO, unlike structured names, UIDs had the
right properties to satisfy these requirements.
They are intrinsically location independent:
they uniquely identify an object no matter where
it resides. The node ID contained in our UIDs
says where the object was created, but has no
necessary connection with its current location.
They are absolute, and they are (relatively)
short and of fixed length. The combination of
these attributes means that it is easy to embed
UIDs in objects to make composite objects, and
that there is little space penalty in using them
to name all objects. It also makes it easy to do
mapping from text string names to UIDs in a layer
above the nucleus. A UID can be used to denote
the type of an object. New types (UIDs) can
easily be generated without interfering with
others doing the same, and can extensibly refer
to a type descriptor object containing type data
and operations.

There were other, less crucial, advantages
that we foresaw. UIDs are good for objects
without string names, such as temporary files;
objects can even be created as temporaries, then
given string names later. Because they are
short, they can be easily hashed, and stored in
system tables, and passed in IPC messages.

36

Because they are guaranteed to be unique, they
can be used as transaction IDs, with the TID also
serving to name the commit record for the
transaction. Finally, because UIDs are hard to
guess, there are certain capability protection
aspects to them: in some cases, it may be
acceptable to use possession of a UID as
permission to operate on the underlying object.

5. Problems with UIDs

We also quickly discovered that there were
problems that needed solution to use UIDs
effectively.

I. Generating UIDs and guaranteeing their
uniqueness.

2. Locating an object given its UID.
3. Naming different versions of an object
4. Replication of objects
5. Lost objects

~.i. Generating V~Ds

We thought that generating UIDs would be easy:
concatenate the node ID of the generating node
with a reading from its real time clock. The
first issue to deal with was choosing the size of
the BID. We had a 48 bit 4 mieroseeond basic
system clock, but that, plus a 20 bit node ID,
and a few bits for future expansion, seemed to
imply a UID that we felt would be a bit long. We
settled on a 36 bit creation time, which meant a
16 millisecond resolution. We Justified it by
noting that, since most objects reside on disk,
they can't be created faster than disk speeds, 36
bits allowed a resolution several times higher.
To allow for possibly bursty UID generation, the
system remembers unused UIDs from the previous
minute or so, and uses them before generating new
o n e s .

The second issue is guaranteeing uniqueness.
Concatenating a node ID and a real time clock
reading guarantees uniqueness as long as one
makes sure that the clock always advances. We
thought this could be assured by providing a
battery operated calendar clock from which to
initialize the real time clock. But batteries
have a limited shelf life; and since it is
important that a UID not be reused, other
measures were needed. So the system stores the
last shutdown time on the disk, and checks it
against the calendar clock during
initialization. If the time is too far wrong,
either baekward, or forward, it requests
verification and/or correction from the user. It
is clear that the clock cannot be allowed to go
backwards; what may not be so instantaneously
obvious is that too long a foward Jump is also
dangerous. Such a Jump is likely to be an error,
requiring later correction; but if any UIDs are
generated from the erroneously advanced clock,
they may be duplicated when real time catches up
to that point.

Another solution is to use other nodes in the
network to corroborate the calendar elock
reading; but since it is possible that none will
be available, our solution would still need to be
resorted to in that case. It seems that no

solution is foolproof, but that the probability
of failure can be made fairly small. Our
experience to date supports this conclusion: with
several hundred nodes in use, we know of no
problems.

~.~. Locatin~ ~bjects

A direct consequence of the location independence
of UIDs is that a locating service is needed to
find an object given its UID. This is the
fundamental distributed algorithm in Aegis: no
global state information is kept about object
locations. The complexity of this task depends
on the restrictions on object location that
higher levels of the system can enforce, and on
the desired level of performance. Some examples
of the effect of various restrictions that could
be imposed are as follows.
- One can restrict objects not to move from the

node where they are created, in which case node
ID part of the UID is certain to be the location
of the object.

- One can restrict (most) objects to be on same
volume as the directory in which they are
cataloged. Then, as long as the locations of a
few volume root directories can be found, all
other objects can be found.
- One can restrict object location as in either

of the above examples, then relax it by
establishing equivalence classes among nodes or
volumes, such that if the above rules allowed an
object to be on one node or volume of a class,
then by these rules, it could be on any node or
volume in the class. This would allow multiple
physical copies of an object with the same UID
to exist and be located.
- Of course, it is possible to have no

restrictions at all, and still locate objects.
After whatever other means exist have failed, a
request to return the location of an object can
be broadcast, and an answer awaited. Also, in
this case, there is absolutely no necessary
relation between nodes or volumes and directory
hierarchies, making hierarchy backup and crash
reconstruction difficult.

We considered all the schemes indicated by the
above examples. Because we allow removable
volumes, the assumption that objects reside at
the node where they were created is not valid.
We also convinced ourselves that in a
sufficiently large (inter)network, and given the
possibility of removable volumes whose node of
origin was in a disjoint network, we could not
guarantee to find an object even if it were
online and accessible. As noted above, even in
this case the object could be found if one were
willing to make a broadcast to the entire
internet, and wait a (possibly) very long time
for an answer; but since this had performance
implications, as well as the other problems noted
above, we were unwilling to base our design on
this approach. Thus, we would have to rely on
heuristics, and, ultimately, perhaps even help
from the user. Our initial goal was to pursue
the second approach, as it met our immediate
requirements; and it can readily be extended into
the third scheme, which we think is sufficiently
flexible to eliminate any need for the fourth.

37

We have already gone through three generations
of locating algorithms, and can foresee more.
They used two sources of 'hints': the node ID in
the UID, and the hint ~ana~er. The sources for
the hint manager's hints can be any program which
believes it can guess the whereabouts of an
object, or even direct input from a user. In
particular, the string name manager guesses that
a cataloged object is on the same node as the
directory in which it is cataloged (except for
special node boundary crossing points).

The first generation algorithm was very
simple. To locate an object given a UID, it
would first search all local disks. If the local
search failed, it would try the node whose ID was
contained in the UID. This procedure could
always find local objects, objects on
dismountable volumes mounted locally, and remote
objects that had never moved from where they were
created; others, however, could not be located.
In particular, remote objects on removable
volumes that had been moved from their creation
node were unlocatable. Also, for remote objects,
time was wasted searching local secondary
storage. Note that for remote objects in this
scheme, the node ID in the UID was more than just
a hint: it had to be right.

The second algorithm added the hint manager.
After tryir~ locally, it would consult the hint
manager, and if a hint were present, would use
the hint. If this failed, it would proceed as in
the first case. Therefore, even remote objects
on removable volumes could be located, if they
were on the same node as the directory in which
they were cataloged. This would normally be very
likely even if we didn't enforce it (which we
currently do).

The time wasted searching locally for remote
objects in the previous algorithms was
noticeable, so a third was adopted. Before
searching locally, the node ID in the UID is
examined; if it is not the ID of the local node,
then the local search is bypassed. Only if the
remote search fails is a local search initiated.

In the future, it is likely that direct input
to the hint manager will be added, as will the
equivalence class technique. Also, in an
internet environment, a second level of hint
manager, usually residing on gateway nodes, will
probably become necessary. However, its task
will be eased considerably because it will only
have to store location information for objects
that could not be located using the other
available hints.

It is significant to note that the object
locating service is layered above the nucleus.
An obJect's location is determined when it is
mapped into a process' address space, and
retained. Thus, it is guranteed to be known at
critical Junctures, such as when servicing page
faults. It is also cached, so that the location
of active objects is likely to be in the cache.
The first case is important for clean system
structure; the second for good system
performance. However, even in the absence of
cached or retained information, locating a remote

object usually takes only one, and at most two,
messages with the current algorithm.

Using UIDs, plus repeated improvement to
locating algorithms, has allowed us to benefit
from the location independence of UIDs, without
paying a serious performance penalty.

~.~. Object versions

If UIDs are allowed to be embedded in objects,
the object version problem arises. The object
containing the reference may wish not to refer to
a particular instance of an object, but to its
latest version. A procedure object may contain
the UIDs of other programs or of libraries, for
example. The fundamental problem is that the
same UID can not name two different objects, even
if they are just different versions. (For Aegis
UIDs, this is true; if they contained an explicit
version number, it need not be true.) We see two
possible solutions to this problem in our
context, both of which involve the use of
indirection 9bJects; in one case, the indirection
object contains a symbolic name; in the other,
the UID of the current version of the object.
(Indirection objects with symbolic names are also
used in the iMAX-432 filing system [POLL 81],
where they are called linkage objects.) In the
first case, whenever a new version becomes
available, the binding of the symbolic name is
changed to refer to the new version. In the
second case, the indirection object is updated
with the new version's UID. In our environment,
the second solution is simplest, because it
doesn't involve the string name manager to
resolve the reference. (The iMAX-432 uses the
symbolic solution because it doesn't have real
UIDs.)

~.~. Renlication

To take advantage of the potential for enhanced
reliability that distributed systems offer, it is
desirable to be able to redundantly store objects
at more than one node. The logcal object thus
created we call a reolicated QbJect and each of
the redundant copies we call a replica. If a
replicated object is immutable, this presents no
great problem. It is relatively easy for the
nucleus to support a replicated immutable object:
all the replicas can have the same UID. Even
though this results in multiple physical objects
with the same UID, since they are all immutable
and identical, it never matters which one the
nucleus finds and uses; there is only one loglcal
object with that UID. One of the object
attributes supported by Aegis' nucleus is
immutability.

For mutable objects, however, it is not as
easy; updates to the object instances must be
coordinated so that all clients see a consistent
state. We don't deal with the concurrency
management problem here, only the problem of
naming the replicated object and its components.
([GIFF 79] and [POPE 81] deal directly with
replication; DFS [STUR 80] provides general
support for multi-node atomic operations which
can be used for replication purposes.) Because it
is complex, it is desirable to leave the

38

management of replication out of the nucleus,
while still allowing it to be conveniently
layered on top. In order to make the new layer
transparent to client programs, it is necessary
that they be able to refer to a replicated
object via one UID. The replication manager, on
the other hand, needs to distinguish between the
replicas, because internally to it they will have
different states, even though the client only
sees consistent states. Thus it needs different
UIDs for each replica. This leads to essentially
the same difficulty as in the object version
problem: the same UID needs to refer to more than
one object. The replication manager must map a
UID presented by a client into the UIDs of the
mutable replicas.

One way to accomplish this is to record the
UIDs of the replicas in an immutable object, and
have clients use its UID to denote the replicated
object. A copy of this immutable object is then
put at each site holding a replica. When a
client refers to the replicated object, its UID
is used to locate one of the immutable object
copies; if one can be found, then at least the
replica at the same site will be available.
However, this does not allow the addition of new
replicas. To solve this, we use 4 of the 8
'other' bits in the UID to denote particular
replicas; let us call it the replica field. A
replicated object has a UID with a replica field
of zero; there is no physical object with this
UID. Each of the replicas (up to fifteen of
them) has the same UID except for a non-zero
replica field. Thus, a client of a replicated
object always names it with a UID having a
replica field of zero; the replication manager
selects and operates on specific replicas via
non-zero replica fields.

Contrasting the two solutions, we see that
using an immutable object supports an arbitrary
mapping from UID of a replicated object to the
UIDs of the replicas which constitute its
representation; whereas the second scheme causes
these UIDs to be easily computable from one
another, eliminating the need for the arbitrary
map. In addition, the second solution allows
replicas to be added and deleted.

~.~. Lost objects

A lost object is one which exists, but for which
no references exist; hence it is inaccessible,
i.e. lost. Unfortunately, it still takes up disk
space. Objects become lost due to crashes, or
when objects which contain references to them are
deleted. Actually, objects are never completely
lost: a scan of a volume's (undamaged) table of
contents data structure can find all objects on a
volume. However, if an object becomes
inaccessible via its text string name, it is
often as good as completely lost. The only
complete way to recover is garbage collection,
but we chose not to implement it. Again, the
consideration was nucleus complexity: if
internode object references are allowed, a
distributed, asynchronous collector is called
for, such as [BISH 77]. We knew of no
implemented example; the nearest thing is the CFS
garbage collector [GARN 80], which is

asynchronous, but which doesn't handle internode
references. Furthermore, in our current objects,
there is no general way to locate all the UIDs,
although the implementation of partitioned
objects (objects segregated into UID parts and
data parts [JONE 80]) would solve this problem.
Finally, we felt that most common cases could be
handled without it. Most objects are cataloged;
and by arranging that an object is not marked
permanent until it has successfully been
cataloged, any newly created but not yet
cataloged object will still be temporary if the
system crashes, and will be deleted by the file
system salvager (see [REDE 80]). Furthermore,
all objects have a father object attribute, which
is the UID of the directory in which they are
cataloged, or of the (primary) object which
contains its UID. If the father object should
cease to exist, the resulting lost object(s) can
be deleted. Thus, object tree structures can be
handled. We felt that the sum of these
techniques would be sufficient.

6. Observations and conclusions

The principal advantages of UIDs are their size,
location independence, and the opportunity for
layering the nucleus implementation that they
provided. Most of the problems involved have
been overcome or are understood satisfactorily;
the possible exception is the general lost object
problem. A feature of UIDa we have taken
advantage of is that, because they are location
independent, initial implementations of higher
layers can impose restrictions on object
location, and the restrictions can later be
removed without restructuring the lower layers;
the same would seem to be hard to accomplish with
structured names.

Of course, it is eventually necessary to
translate UIDs into structured names, because the
knowing the location of an object is a
prerequisite to accessing it. We have found it
advantageous to delay this binding as long as
possible, and to make general and uniform use of
the unbound names.

Aegis as currently implemented is missing some
of the features described above. Presently, it
does not support object replication, partitioned
objects, garbage collection, network verified
time for UID generation, or extenslble types.
However, the fundamental groundwork, that of
making a design that can be gracefully extended,
and anticipating the most likely areas of
extension, is essential to any system which is
intended to have a long and useful life. We
think that we have accomplished that goal.

APOL 81

References

Apollo DOMAIN A r a h l t e o t u r e . Apollo
Computer Inc., Chelmsford, Mass.,
1981.

39

BIRR 80

BIRR 81

BISH 77

CLAR 81

DION 80

FABR 74

FRID 81

GARN 80

JONE 80

LAMP 80

LANT 79

LAZO 81

Birrel, A. D., Needham, R. M.
"A Universal File Server."
IEEE Trance,ions on Software
Engineering, SE-6, 5 (September
1980), pp. 450-453

Birrel, A. D., Levin, R., Needham, R.
M., Schroeder, M. D.
"Grapevine: An Exercise in
Distributed Computing."
Freprints for the Eighth Symposium on
Operating Systems Principles,
December 1981, pp. 54-69.

Bishop, P. B.
Computer Systems with a Very Large
Address Space and Garbage Collection.
Technical Report LCSITR-178,
Laboratory for Computer Science,
M.I.T., Cambridge, Mass., May 1977.

Clark, D., Halstead, B., Keohan, S.,
Sieber, J., Test, J., Ward, S.
"The TRIX 1.0 Operating System."
Newsletter of IEEE TeQh. Comm. on
Distributed Processing, 1, 2
(December 1981), pp. 3-5.

Dion, J.
"The Cambridge File Server."
Operating Systems Review,
(October 1980), Pp. 26-35.

14, 4

Fabry, R.S.,
"Capability-Based Addressing"
Communications o f t h e ACM, 17 7 (July
1974) , pp. 403-412.

Fridrlch, M., Older, W.
"The FELIX File Server."
Proceedings of t h e Eighth Symposium
on Operating Systems Principles,
December 1981, pp. 37-44.

Garnett, N. H., Needham, R. M.
"An Asyncronous Garbage Collector for
the Cambridge File Server."
Operating Systems Review, 14, 4
(October 1980), pp. 36-40.

Jones, A.K.
"Capability Archictecture Revisited."
Operating Systems Review, 14, 3 (July
1980) , pp. 33-35.

Lampson, B. W., and Redell, D. D.
"Experience with Processes and
Monitors in Mesa."
Communications of the ACM, 23, 2
(February 1980), pp. 105-113.

Lantz, K. A., Rashid, R. F.
"Virtual Terminal Management in a
Multiple Process Environment."
P r o c e e d i n g s o f t h e S e v e n t h Symposium
on Operating Systems Principles,
December 1979, PP. 86-97.

Lozowska, E., Levy, H., Almes, G.,
Fischer, M., Fowler, R., Vestal, S.
"The Architecture of the Eden

LEVI 79

LISK 79

LUDE 81

NEED 78

NELS 81

ORGA 72

POLL 81

POPE 81

REDE 8O

RITC 74

System."
Proceedings of the Eighth Symposium
on Operating Systems Principles,
December 1981, pp. 148-159.

Levin, R., Cohen, E., Corwin, W.,
Pollack, F., Wulf, W.
"Policy/Mechanism Seperation in
Hydra."
Proceedings of the Fifth Symposium on
Operating Systems Principles,
December 1979, pP. 132-140.

Liskov, B.
"Primitives for Distributed
Computing".
P r o c e e d i n g s o f t h e S e v e n t h Symposium
on Operating Systems Principles,
December 1979, pp. 33-42.

Luderer, G. W. R., Che, H., Haggerty,
J. P., Kirslis, P. A., Marshall, W.
T.
"A Distributed Unix System Based on a
Virtual Circuit Switch".
P r o c e e d i n g s o f t h e E i g h t h Symposium
on Operating Systems Principles,
December 1981, pp. 160-168.

Needham, R. M., Sehroeder, M. D.
"Using Encryption for Authentication
in Large Networks of Computers."
Communications of the ACM, 21 12
(December 1978), pp. 993-999.

Nelson, D. L.
"Role of Local Network in the Apollo
Computer System."
Newsletter of IEEE Teeh. Comm. on
Distributed Processing, 1, 2
(December 1981), pp. I0-13.

Organlck, E. I.
The Multies System: An Examination of
Its Structure M.I.T. Press, 1972.

Pollack, F., Kahn, K., Wilkinson, R.
"The IMAX-432 Object Filing System."
Proceedings of the Eighth Symposium
on Operating Systems Principles,
December 1981, pp. 137-147.

Popek, G., Walker, B., Chow, J.,
Edwards, D., Kline, C., Rudisin, G.,
Thlel, G.
"LOCUS: A Network Transparent, High
Reliability Distributed System."
Proceedings of the Eighth Symposium
on Operating Systems Principles,
December 1981, pp. 169-177.

Redell, D. D., Dalai, Y. K., Horsley,
T. R., Lauer, H. C., Lynch, W. C.,
McJones, P. R., Murray, H. G.,
Purcell, S. C.
"Pilot: an Operating System for a
Personal Computer."
Communlaatlons of the ACM, 23, 2
(February 1980), pp. 81-91.

Ritchie, D. M., Thompson, K.

40

STUR 80

SVOB 79

SWIN 79

WARD 80

"The UNIX time-sharing system"
Communications of the ACM, 17,
(July 1974), pp. 365-375.

Sturgis, H., Mitchell, J., Israel,
J.
"Issues in the Design and Use of a
Distributed File Server."
Operating Systems Review, 14, 3 (July
1980), pp. 55-69.

Svobodova, L., Liskov, B., Clark, D.
Distributed Computer Systems:
Structure and Semantles. Technical
Report LCS/TR-215, Laboratory for
Computer Science, M.I.T., Cambridge,
Mass., March ;979.

Swinehart, D., McDaniel, G., Boggs,
D.
"WFS: A Simple Shared File System for
a Distributed Environment."
Proceed ings o f t he Seventh Symposium
on Operating Systems Principles,
December 1979, pp. 9-;7.

Ward, S.
"TRIX: A Network-orlented Operating
System."
P r o c e e d i n g s o f COMPCON '80, San
Fransisco, Feb. 1980.

WULF 74 Wulf, W., Cohen, E., Corwln, W.,
Jones. A., Levln, R., Pollack, F.
"Hydra: The Kernel of a
Multiprocessor Operating System."
Communications o f the ACM, 17, 6
(June 1974), pp. 337-345.

41

