
UIDS as Internal Names in a Distributed File System 

Paul d. Leach, Bernard L. Stumpf, 
James A. Hamilton, and Paul H. Levine 

Apollo Computer, Inc. 
19 Alpha Road, Chelmsford, MA 01824 

Abstract 

The use of UIDs as internal names in an operating 
system for a local network is discussed. The use 
of internal names in other distributed systems is 
briefly surveyed. For this system, UIDs were 
chosen because of their intrinsic location 
independence and because they seemed to lend 
themselves to a clean structure for the operating 
system nucleus. The problems created by UIDs 
were: generating UIDs; locating objects; 
supporting multiple versions of objects; 
replicating objects; and losing objects. Some 
solutions to these problems are presented; for 
others, no satisfactory solution has yet been 
implemented. 

I. Introduction 

Although the area of distributed systems is a 
relatively new one, there are already many 
examples of implemented distributed operating 
systems for local networks and their attendant 
file systems. Many of these systems have chosen 
to use internal names for the objects they 
support, into which user visible text string 
names are mapped. Among the most popular forms 
of internal name have been unique identifiers 
(UIDs); however, there has been little in the 
literature discussing the motivation for choosing 
one form of name over another, or the 
consequences of a choice once made. This paper 
presents the experiences that resulted from using 
UIDs as internal names in one particular 
distributed system: the Aegis operating system 
for the Apollo DOMAIN network [APOL 81, NELS 
81]. 
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i.i. 9rganization 

The rest of this paper is organized as follows. 
Section 2 discusses internal names as they are 
used in several other distributed systems. 
Section 3 presents an overview of the DOMAIN 
system envirorment, and of the nature of UIDs and 
objects in Aegis. Section 4 deals with the 
motivations and perceived advantages that led us 
to choose UIDs. Section 5 deals with the problems 
we foresaw or discovered in the process of 
implementing the system, and presents some 
solutions to these problems. Section 6 offers 
some final observations and conclusions. 

2. Internal names in other systems 

Given that one decides to use internal names, 
there seem to be just two fundamental 
alternatives: to use UIDs or "structured names". 
UIDs can be thought of as simply large integers 
or long bit strings, although some other 
information may be encoded within them. The 
important characteristic is that they are large 
enough that the same UID will never refer to two 
different objects at the same time. Structured 
names, as in [SVOB 79], contain more than one 
component, some of which are used to indicate the 
location of, or route to, the object named. 
However, individual Components may be unique for 
all time only within the context of the other 
components; some systems with this property have 
called their internal names UIDs. This section 
briefly indicates the internal naming schemes 
used by several distributed systems or their 
distributed file system components. 

~.i. WF~ 

The Woodstock File Server (WFS) [SWIN 79] uses 
"file identifiers" (FIDs) to name files. FIDs 
are 32 bit unsigned integers, which are unique 
for all time within a individual WFS server, but 
may be duplicated across servers. Thus, it is up 
to each WFS client to remember the server 
associated with each FID. The combination of 
server name and FID is a form of structured 
name. The mapping from FID to physical disk 
addresses is via a hash table. 
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2.2. Pilot 

Pilot [REDE 80] uses "universal identifiers 
(UIDs)" to name files; they are 64 bits long and 
"guaranteed unique in both space and time". UIDs 
were chosen so that removable volumes could be 
transported between machines without fear of 
conflict. A B-tree is used to map UIDs to 
physical disk addresses. 

2.~. DFS 

The distributed file system (DFS) [STUB 80] also 
uses UIDs. We suspect that they are really UIDs 
because the implementors provide "a simple 
locating service" to help find the server which 
holds a file, given only its UID; a structured 
name would not need a locating service. Like 
Pilot, a B-tree is used to map UIDs to physical 
disk addresses. 

2.A. c~s 

The Cambridge File Server (CFS) [DION 80] uses 
what it calls UIDs to name files. They are 64 
bits long; 32 bits are a random number, and 32 
bits contain the disk address of the obJect's 
descriptor. The use of garbage collection [GARN 
80] guarantees that an object will not be deleted 
while a reference to it exists, and therefore 
that, within a single server, a UID can never 
refer to more than one object. However, it seems 
that UIDs can be duplicated on different servers, 
although the 32 bit random number makes it highly 
improbable. 

2.A. Felix 

The Felix File Server [FRID 81] uses a system 
generated "File Identifier" (FID) to name files. 
AN FID is a "universal access capability" for the 
file it names. When the file is deleted, its PID 
is guaranteed not to be reused for a certain 
period of time. It also seems that FIDs with the 
same numerical value can be in use by more than 
one server at the same time. 

2.~. LOCUS 

The LOCUS system [POPE 81] uses structured 
internal names. A name is a pair "<file group 
number, file descriptor number>". The file group 
number can be thought of as uniquely identifying 
a logical volume. The file descriptor number is 
an index into a per-file-group array of file 
descriptors; it is unique within a file group as 
long as any references to the file it identifies 
exist. The choice of internal name seems to have 
been motivated by UNIX (TM, Bell Laboratories) 
compatibility constraints: directory structures 
are visible to application programs and contain 
file descriptor numbers, which are relative to 
the file group containing the directory. 

2.1- Others 

There are a number of other recent 
implementations of, or designs for, distributed 
systems for which descriptions have been 
published: S/F-UNIX [LUDE 81]; ACCENT [RASH 81]; 
TRIX [WARD 80, CLAR 81]; EDEN [LAZO 81]. 

However, they concentrate on other aspects of 
distributed systems design, and do not provide 
much information on t~eir use of internal names. 

2.8. Summary 

When the design of Aegis began in early 1980, 
there were fewer examples of distributed systems 
to study; Pilot and WFS particularly influenced 
us. Pilot uses UIDs; WFS uses IDs which are 
unique within a single file server, but which 
require its clients to remember upon which server 
files reside. From our studies we got little 
motivation for either choice; yet upon starting 
our design it became clear that there were 
non-trlvial problems involved with either 
choice. 

3- DOMAIN system environment 

~.I. Hardware 

A DOMAIN system consists of a collection of 
powerful personal computers (nodes) connected 
together by a high speed (12 megabit/second) 
local network. Each node has a 'tick, time [LAMP 
80] of 1.25 microseconds and can have up to 3.5 
megabytes of main memory. Most nodes have 33 
megabytes of disk storage and a I megabyte floppy 
disk, but no disk storage is required for a node 
to operate. A bit mapped display has 800 by 1024 
pixels, and a bi~ BLT (block transfer) to move 
arbitrary rectangular areas at high speed. The 
display is allocated into windows (called PADs) 
which are a form of virtual terminal [LANT 79]; 
multiple concurrent processes, each possessing 
its own wlndow(s), can be controlled by the user 
simultaneously. Dynamic address translation 
hardware allows each process to address 16 
megabytes of demand paged virtual memory. The 
network arbitrates access using a token passing 
method; each node's network controller provides a 
unique node ID which is assigned at the factory 
and contained in the controller's microcode 
PROMs. 

~.2. System usage characteristics 

It is expected that the nodes in a network will 
be owned by many organizations, with each 
organization owning many nodes. One organization 
is likely to be chartered to provide computing 
related services and resources to the entire 
network community. Within an organization, a 
high degree of cooperation will be desired; while 
between organizations, a higher degree of 
autonomy will be preferred; and the service 
organization wants resource sharing, protection 
and (perhaps) accountability. Aegis provides 
tools to allow a high degree of cooperation, and 
tools to create policies which can allow a high 
degree of autonomy. This results in an 
envlrom~ent of "policy parameterized autonomy". 

~.~. Objects and UIDs 

At the highest level, 
"object-orlented" system, and 
by UIDs. Objects are typed 

Aegis is an 
objects are named 
and protected: 
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associated with each object is the UID of an 
access control list, the UID of a type 
descriptor, as well as a physical storage 
descriptor, and some other attributes. Supported 
objects include: alphanumeric text, record 
structured data, IPC mailboxes, executable 
modules, directories, access control lists, 
serial I/O ports, magnetic tape drives, and 
display bit maps. UIDs are also used to identify 
persons, projects, and subsystems for protection 
purposes. 

Aegis UIDs are 64 bit structures, containing a 
36 bit creation time, a 20 bit node ID, and 8 
other bits whose use is described later. UIDs 
possess the addressing aspects of a capability, 
but without the protections aspects [FABR 74]. 
Or, a UID can be thought of as the absolute 
address of an object in a 64 bit address space. 
The hardware does not support this form of 
address, so programs access objects by presenting 
a UID and asking for the object it names to be 
"mapped" into the program's hardware processor 
address space (see [REDE 80] on the desirability 
of mapping in distributed systems). After that, 
they are accessed via virtual memory paging: not 
to create shared memory semantics, but as a form 
of lazy evaluation, since only the needed 
portions of objects are actually fetched from 
disk or over the network. 

The system provides a high degree of netwopk 
transcarencv in accessing objects. The mapping 
operation is independent of whether the UID is 
for a remote or local object. As long as 
programs assume that their objects are not local, 
and hence operations on them are subject to 
communication failures, they need not be aware of 
their location (see [POPE 81] for a discussion). 

~.~ Naming objects 

Text string names for objects are provided by a 
directory subsystem layered on top of the Aegis 
nucleus. The name space is a hierarchical tree, 
like Multics [ORGA 72] or UNIX [RITC 74], with 
directories at the nodes and other objects at the 
leaves. Each directory is primarily a simple set 
of associations between comoonent ~ame~ (strings) 
and UIDs. The ~bsolute path name of an object 
is an ordered list of component names. All but 
(possibly) the last are names of directories, 
which, when resolved starting from a network-wlde 
distinguished "root" directory, lead to the UID 
of the object. Thus, an absolute path name, like 
a UID, is valid throughout the entire network, 
an@ denotes just one object. 

4. M o t i v a t i o n  f o r  u s i n g  UIDs 

There were several main reasons for choosing UIDs 
as internal names. First, we wanted location 
independence: to divorce the internal name of an 
object from its location in the network. Second, 
we wanted absolute internal names: ones that 
could be passed from process to process, and from 
node to node, without having to be relocated at 
each step. Third, we wanted to separate text 
string naming from internal naming, in order to 
remove string name management from the nucleus. 

Fourth, we wanted a uniform way of naming all 
objects in the system. Fifth, we wanted to be 
able to construct composite objects (objects 
which refer to other objects) easily, and to 
allow user programs to do likewise. Sixth, we 
wanted to allow for typing of objects, and in a 
potentially extensible and manageable way. 

We wanted objects to be able to move without 
having to find and alter all references to them. 
The system does not move objects except when 
explicitly directed to do so. However, users may 
want to move dlsmountable volumes from one node 
to another, or to move a peripheral from a 
disabled node to a functioning one. Structured 
names imply locations, which makes moving an 
object harder, because references to the moved 
object have to be updated; this in turn mitigates 
against composite objects. UIDs, because of 
their location independence, have no such 
problem. 

From an implementation point of view, we 
wanted to be able to start with simple object 
locating algorithms, perhaps with restrictions 
placed on object locations, and work up to better 
ones, again without changing any stored data. 
Structured names seemed to freeze this decision 
too early: the locating scheme is bound into the 
name. We also wanted to avoid the proliferation 
of ad hoc internal names by having a single, 
simple, cheap, uniformly applicable naming scheme 
available at all but the lowest levels of the 
system. 

Text string names can also be made location 
independent, but we wanted the nucleus interface 
to be simpler than string names. Also, string 
names are too long to be embedded in objects, too 
expensive to resolve, and therefore can usually 
be used only at fairly high levels in the 
system. 

SO, unlike structured names, UIDs had the 
right properties to satisfy these requirements. 
They are intrinsically location independent: 
they uniquely identify an object no matter where 
it resides. The node ID contained in our UIDs 
says where the object was created, but has no 
necessary connection with its current location. 
They are absolute, and they are (relatively) 
short and of fixed length. The combination of 
these attributes means that it is easy to embed 
UIDs in objects to make composite objects, and 
that there is little space penalty in using them 
to name all objects. It also makes it easy to do 
mapping from text string names to UIDs in a layer 
above the nucleus. A UID can be used to denote 
the type of an object. New types (UIDs) can 
easily be generated without interfering with 
others doing the same, and can extensibly refer 
to a type descriptor object containing type data 
and operations. 

There were other, less crucial, advantages 
that we foresaw. UIDs are good for objects 
without string names, such as temporary files; 
objects can even be created as temporaries, then 
given string names later. Because they are 
short, they can be easily hashed, and stored in 
system tables, and passed in IPC messages. 
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Because they are guaranteed to be unique, they 
can be used as transaction IDs, with the TID also 
serving to name the commit record for the 
transaction. Finally, because UIDs are hard to 
guess, there are certain capability protection 
aspects to them: in some cases, it may be 
acceptable to use possession of a UID as 
permission to operate on the underlying object. 

5. Problems with UIDs 

We also quickly discovered that there were 
problems that needed solution to use UIDs 
effectively. 

I. Generating UIDs and guaranteeing their 
uniqueness. 

2. Locating an object given its UID. 
3. Naming different versions of an object 
4. Replication of objects 
5. Lost objects 

~.i. Generating V~Ds 

We thought that generating UIDs would be easy: 
concatenate the node ID of the generating node 
with a reading from its real time clock. The 
first issue to deal with was choosing the size of 
the BID. We had a 48 bit 4 mieroseeond basic 
system clock, but that, plus a 20 bit node ID, 
and a few bits for future expansion, seemed to 
imply a UID that we felt would be a bit long. We 
settled on a 36 bit creation time, which meant a 
16 millisecond resolution. We Justified it by 
noting that, since most objects reside on disk, 
they can't be created faster than disk speeds, 36 
bits allowed a resolution several times higher. 
To allow for possibly bursty UID generation, the 
system remembers unused UIDs from the previous 
minute or so, and uses them before generating new 
o n e s .  

The second issue is guaranteeing uniqueness. 
Concatenating a node ID and a real time clock 
reading guarantees uniqueness as long as one 
makes sure that the clock always advances. We 
thought this could be assured by providing a 
battery operated calendar clock from which to 
initialize the real time clock. But batteries 
have a limited shelf life; and since it is 
important that a UID not be reused, other 
measures were needed. So the system stores the 
last shutdown time on the disk, and checks it 
against the calendar clock during 
initialization. If the time is too far wrong, 
either baekward, or forward, it requests 
verification and/or correction from the user. It 
is clear that the clock cannot be allowed to go 
backwards; what may not be so instantaneously 
obvious is that too long a foward Jump is also 
dangerous. Such a Jump is likely to be an error, 
requiring later correction; but if any UIDs are 
generated from the erroneously advanced clock, 
they may be duplicated when real time catches up 
to that point. 

Another solution is to use other nodes in the 
network to corroborate the calendar elock 
reading; but since it is possible that none will 
be available, our solution would still need to be 
resorted to in that case. It seems that no 

solution is foolproof, but that the probability 
of failure can be made fairly small. Our 
experience to date supports this conclusion: with 
several hundred nodes in use, we know of no 
problems. 

~.~. Locatin~ ~bjects 

A direct consequence of the location independence 
of UIDs is that a locating service is needed to 
find an object given its UID. This is the 
fundamental distributed algorithm in Aegis: no 
global state information is kept about object 
locations. The complexity of this task depends 
on the restrictions on object location that 
higher levels of the system can enforce, and on 
the desired level of performance. Some examples 
of the effect of various restrictions that could 
be imposed are as follows. 
- One can restrict objects not to move from the 

node where they are created, in which case node 
ID part of the UID is certain to be the location 
of the object. 

- One can restrict (most) objects to be on same 
volume as the directory in which they are 
cataloged. Then, as long as the locations of a 
few volume root directories can be found, all 
other objects can be found. 
- One can restrict object location as in either 

of the above examples, then relax it by 
establishing equivalence classes among nodes or 
volumes, such that if the above rules allowed an 
object to be on one node or volume of a class, 
then by these rules, it could be on any node or 
volume in the class. This would allow multiple 
physical copies of an object with the same UID 
to exist and be located. 
- Of course, it is possible to have no 

restrictions at all, and still locate objects. 
After whatever other means exist have failed, a 
request to return the location of an object can 
be broadcast, and an answer awaited. Also, in 
this case, there is absolutely no necessary 
relation between nodes or volumes and directory 
hierarchies, making hierarchy backup and crash 
reconstruction difficult. 

We considered all the schemes indicated by the 
above examples. Because we allow removable 
volumes, the assumption that objects reside at 
the node where they were created is not valid. 
We also convinced ourselves that in a 
sufficiently large (inter)network, and given the 
possibility of removable volumes whose node of 
origin was in a disjoint network, we could not 
guarantee to find an object even if it were 
online and accessible. As noted above, even in 
this case the object could be found if one were 
willing to make a broadcast to the entire 
internet, and wait a (possibly) very long time 
for an answer; but since this had performance 
implications, as well as the other problems noted 
above, we were unwilling to base our design on 
this approach. Thus, we would have to rely on 
heuristics, and, ultimately, perhaps even help 
from the user. Our initial goal was to pursue 
the second approach, as it met our immediate 
requirements; and it can readily be extended into 
the third scheme, which we think is sufficiently 
flexible to eliminate any need for the fourth. 
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We have already gone through three generations 
of locating algorithms, and can foresee more. 
They used two sources of 'hints': the node ID in 
the UID, and the hint ~ana~er. The sources for 
the hint manager's hints can be any program which 
believes it can guess the whereabouts of an 
object, or even direct input from a user. In 
particular, the string name manager guesses that 
a cataloged object is on the same node as the 
directory in which it is cataloged (except for 
special node boundary crossing points). 

The first generation algorithm was very 
simple. To locate an object given a UID, it 
would first search all local disks. If the local 
search failed, it would try the node whose ID was 
contained in the UID. This procedure could 
always find local objects, objects on 
dismountable volumes mounted locally, and remote 
objects that had never moved from where they were 
created; others, however, could not be located. 
In particular, remote objects on removable 
volumes that had been moved from their creation 
node were unlocatable. Also, for remote objects, 
time was wasted searching local secondary 
storage. Note that for remote objects in this 
scheme, the node ID in the UID was more than just 
a hint: it had to be right. 

The second algorithm added the hint manager. 
After tryir~ locally, it would consult the hint 
manager, and if a hint were present, would use 
the hint. If this failed, it would proceed as in 
the first case. Therefore, even remote objects 
on removable volumes could be located, if they 
were on the same node as the directory in which 
they were cataloged. This would normally be very 
likely even if we didn't enforce it (which we 
currently do). 

The time wasted searching locally for remote 
objects in the previous algorithms was 
noticeable, so a third was adopted. Before 
searching locally, the node ID in the UID is 
examined; if it is not the ID of the local node, 
then the local search is bypassed. Only if the 
remote search fails is a local search initiated. 

In the future, it is likely that direct input 
to the hint manager will be added, as will the 
equivalence class technique. Also, in an 
internet environment, a second level of hint 
manager, usually residing on gateway nodes, will 
probably become necessary. However, its task 
will be eased considerably because it will only 
have to store location information for objects 
that could not be located using the other 
available hints. 

It is significant to note that the object 
locating service is layered above the nucleus. 
An obJect's location is determined when it is 
mapped into a process' address space, and 
retained. Thus, it is guranteed to be known at 
critical Junctures, such as when servicing page 
faults. It is also cached, so that the location 
of active objects is likely to be in the cache. 
The first case is important for clean system 
structure; the second for good system 
performance. However, even in the absence of 
cached or retained information, locating a remote 

object usually takes only one, and at most two, 
messages with the current algorithm. 

Using UIDs, plus repeated improvement to 
locating algorithms, has allowed us to benefit 
from the location independence of UIDs, without 
paying a serious performance penalty. 

~.~. Object versions 

If UIDs are allowed to be embedded in objects, 
the object version problem arises. The object 
containing the reference may wish not to refer to 
a particular instance of an object, but to its 
latest version. A procedure object may contain 
the UIDs of other programs or of libraries, for 
example. The fundamental problem is that the 
same UID can not name two different objects, even 
if they are just different versions. (For Aegis 
UIDs, this is true; if they contained an explicit 
version number, it need not be true.) We see two 
possible solutions to this problem in our 
context, both of which involve the use of 
indirection 9bJects; in one case, the indirection 
object contains a symbolic name; in the other, 
the UID of the current version of the object. 
(Indirection objects with symbolic names are also 
used in the iMAX-432 filing system [POLL 81], 
where they are called linkage objects.) In the 
first case, whenever a new version becomes 
available, the binding of the symbolic name is 
changed to refer to the new version. In the 
second case, the indirection object is updated 
with the new version's UID. In our environment, 
the second solution is simplest, because it 
doesn't involve the string name manager to 
resolve the reference. (The iMAX-432 uses the 
symbolic solution because it doesn't have real 
UIDs.) 

~.~. Renlication 

To take advantage of the potential for enhanced 
reliability that distributed systems offer, it is 
desirable to be able to redundantly store objects 
at more than one node. The logcal object thus 
created we call a reolicated QbJect and each of 
the redundant copies we call a replica. If a 
replicated object is immutable, this presents no 
great problem. It is relatively easy for the 
nucleus to support a replicated immutable object: 
all the replicas can have the same UID. Even 
though this results in multiple physical objects 
with the same UID, since they are all immutable 
and identical, it never matters which one the 
nucleus finds and uses; there is only one loglcal 
object with that UID. One of the object 
attributes supported by Aegis' nucleus is 
immutability. 

For mutable objects, however, it is not as 
easy; updates to the object instances must be 
coordinated so that all clients see a consistent 
state. We don't deal with the concurrency 
management problem here, only the problem of 
naming the replicated object and its components. 
([GIFF 79] and [POPE 81] deal directly with 
replication; DFS [STUR 80] provides general 
support for multi-node atomic operations which 
can be used for replication purposes.) Because it 
is complex, it is desirable to leave the 
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management of replication out of the nucleus, 
while still allowing it to be conveniently 
layered on top. In order to make the new layer 
transparent to client programs, it is necessary 
that they be able to refer to a replicated 
object via one UID. The replication manager, on 
the other hand, needs to distinguish between the 
replicas, because internally to it they will have 
different states, even though the client only 
sees consistent states. Thus it needs different 
UIDs for each replica. This leads to essentially 
the same difficulty as in the object version 
problem: the same UID needs to refer to more than 
one object. The replication manager must map a 
UID presented by a client into the UIDs of the 
mutable replicas. 

One way to accomplish this is to record the 
UIDs of the replicas in an immutable object, and 
have clients use its UID to denote the replicated 
object. A copy of this immutable object is then 
put at each site holding a replica. When a 
client refers to the replicated object, its UID 
is used to locate one of the immutable object 
copies; if one can be found, then at least the 
replica at the same site will be available. 
However, this does not allow the addition of new 
replicas. To solve this, we use 4 of the 8 
'other' bits in the UID to denote particular 
replicas; let us call it the replica field. A 
replicated object has a UID with a replica field 
of zero; there is no physical object with this 
UID. Each of the replicas (up to fifteen of 
them) has the same UID except for a non-zero 
replica field. Thus, a client of a replicated 
object always names it with a UID having a 
replica field of zero; the replication manager 
selects and operates on specific replicas via 
non-zero replica fields. 

Contrasting the two solutions, we see that 
using an immutable object supports an arbitrary 
mapping from UID of a replicated object to the 
UIDs of the replicas which constitute its 
representation; whereas the second scheme causes 
these UIDs to be easily computable from one 
another, eliminating the need for the arbitrary 
map. In addition, the second solution allows 
replicas to be added and deleted. 

~.~. Lost objects 

A lost object is one which exists, but for which 
no references exist; hence it is inaccessible, 
i.e. lost. Unfortunately, it still takes up disk 
space. Objects become lost due to crashes, or 
when objects which contain references to them are 
deleted. Actually, objects are never completely 
lost: a scan of a volume's (undamaged) table of 
contents data structure can find all objects on a 
volume. However, if an object becomes 
inaccessible via its text string name, it is 
often as good as completely lost. The only 
complete way to recover is garbage collection, 
but we chose not to implement it. Again, the 
consideration was nucleus complexity: if 
internode object references are allowed, a 
distributed, asynchronous collector is called 
for, such as [BISH 77]. We knew of no 
implemented example; the nearest thing is the CFS 
garbage collector [GARN 80], which is 

asynchronous, but which doesn't handle internode 
references. Furthermore, in our current objects, 
there is no general way to locate all the UIDs, 
although the implementation of partitioned 
objects (objects segregated into UID parts and 
data parts [JONE 80]) would solve this problem. 
Finally, we felt that most common cases could be 
handled without it. Most objects are cataloged; 
and by arranging that an object is not marked 
permanent until it has successfully been 
cataloged, any newly created but not yet 
cataloged object will still be temporary if the 
system crashes, and will be deleted by the file 
system salvager (see [REDE 80]). Furthermore, 
all objects have a father object attribute, which 
is the UID of the directory in which they are 
cataloged, or of the (primary) object which 
contains its UID. If the father object should 
cease to exist, the resulting lost object(s) can 
be deleted. Thus, object tree structures can be 
handled. We felt that the sum of these 
techniques would be sufficient. 

6. Observations and conclusions 

The principal advantages of UIDs are their size, 
location independence, and the opportunity for 
layering the nucleus implementation that they 
provided. Most of the problems involved have 
been overcome or are understood satisfactorily; 
the possible exception is the general lost object 
problem. A feature of UIDa we have taken 
advantage of is that, because they are location 
independent, initial implementations of higher 
layers can impose restrictions on object 
location, and the restrictions can later be 
removed without restructuring the lower layers; 
the same would seem to be hard to accomplish with 
structured names. 

Of course, it is eventually necessary to 
translate UIDs into structured names, because the 
knowing the location of an object is a 
prerequisite to accessing it. We have found it 
advantageous to delay this binding as long as 
possible, and to make general and uniform use of 
the unbound names. 

Aegis as currently implemented is missing some 
of the features described above. Presently, it 
does not support object replication, partitioned 
objects, garbage collection, network verified 
time for UID generation, or extenslble types. 
However, the fundamental groundwork, that of 
making a design that can be gracefully extended, 
and anticipating the most likely areas of 
extension, is essential to any system which is 
intended to have a long and useful life. We 
think that we have accomplished that goal. 

APOL 81 

References 

Apollo DOMAIN A r a h l t e o t u r e .  Apollo 
Computer Inc., Chelmsford, Mass., 
1981. 

39 



BIRR 80 

BIRR 81 

BISH 77 

CLAR 81 

DION 80 

FABR 74 

FRID 81 

GARN 80 

JONE 80 

LAMP 80 

LANT 79 

LAZO 81 

Birrel, A. D., Needham, R. M. 
"A Universal File Server." 
IEEE Trance,ions on Software 
Engineering, SE-6, 5 (September 
1980), pp. 450-453 

Birrel, A. D., Levin, R., Needham, R. 
M., Schroeder, M. D. 
"Grapevine: An Exercise in 
Distributed Computing." 
Freprints for the Eighth Symposium on 
Operating Systems Principles, 
December 1981, pp. 54-69. 

Bishop, P. B. 
Computer Systems with a Very Large 
Address Space and Garbage Collection. 
Technical Report LCSITR-178, 
Laboratory for Computer Science, 
M.I.T., Cambridge, Mass., May 1977. 

Clark, D., Halstead, B., Keohan, S., 
Sieber, J., Test, J., Ward, S. 
"The TRIX 1.0 Operating System." 
Newsletter of IEEE TeQh. Comm. on 
Distributed Processing, 1, 2 
(December 1981), pp. 3-5. 

Dion, J. 
"The Cambridge File Server." 
Operating Systems Review, 
(October 1980), Pp. 26-35. 

14, 4 

Fabry, R.S., 
"Capability-Based Addressing" 
Communications o f  t h e  ACM, 17 7 (July 
1974) ,  pp.  403-412. 

Fridrlch, M., Older, W. 
"The FELIX File Server." 
Proceedings of t h e  Eighth Symposium 
on Operating Systems Principles, 
December 1981, pp. 37-44. 

Garnett, N. H., Needham, R. M. 
"An Asyncronous Garbage Collector for 
the Cambridge File Server." 
Operating Systems Review, 14, 4 
(October 1980), pp. 36-40. 

Jones, A.K. 
"Capability Archictecture Revisited." 
Operating Systems Review, 14, 3 (July 
1980) ,  pp. 33-35. 

Lampson, B. W., and Redell, D. D. 
"Experience with Processes and 
Monitors in Mesa." 
Communications of the ACM, 23, 2 
(February 1980), pp. 105-113. 

Lantz, K. A., Rashid, R. F. 
"Virtual Terminal Management in a 
Multiple Process Environment." 
P r o c e e d i n g s  o f  t h e  S e v e n t h  Symposium 
on Operating Systems Principles, 
December 1979, PP. 86-97. 

Lozowska, E., Levy, H., Almes, G., 
Fischer, M., Fowler, R., Vestal, S. 
"The Architecture of the Eden 

LEVI 79 

LISK 79 

LUDE 81 

NEED 78 

NELS 81 

ORGA 72 

POLL 81 

POPE 81 

REDE 8O 

RITC 74 

System." 
Proceedings of  the Eighth Symposium 
on Operating Systems Principles, 
December 1981, pp. 148-159. 

Levin, R., Cohen, E., Corwin, W., 
Pollack, F., Wulf, W. 
"Policy/Mechanism Seperation in 
Hydra." 
Proceedings of the Fifth Symposium on 
Operating Systems Principles, 
December 1979, pP. 132-140. 

Liskov, B. 
"Primitives for Distributed 
Computing". 
P r o c e e d i n g s  o f  t h e  S e v e n t h  Symposium 
on Operating Systems Principles, 
December 1979, pp. 33-42. 

Luderer, G. W. R., Che, H., Haggerty, 
J. P., Kirslis, P. A., Marshall, W. 
T. 
"A Distributed Unix System Based on a 
Virtual Circuit Switch". 
P r o c e e d i n g s  o f  t h e  E i g h t h  Symposium 
on Operating Systems Principles, 
December 1981, pp.  160-168.  

Needham, R. M., Sehroeder, M. D. 
"Using Encryption for Authentication 
in Large Networks of Computers." 
Communications of the ACM, 21 12 
(December 1978), pp. 993-999. 

Nelson, D. L. 
"Role of Local Network in the Apollo 
Computer System." 
Newsletter of IEEE Teeh. Comm. on 
Distributed Processing, 1, 2 
(December 1981), pp. I0-13. 

Organlck, E. I. 
The Multies System: An Examination of 
Its Structure M.I.T. Press, 1972. 

Pollack, F., Kahn, K., Wilkinson, R. 
"The IMAX-432 Object Filing System." 
Proceedings of the Eighth Symposium 
on Operating Systems Principles, 
December 1981, pp. 137-147. 

Popek, G., Walker, B., Chow, J., 
Edwards, D., Kline, C., Rudisin, G., 
Thlel, G. 
"LOCUS: A Network Transparent, High 
Reliability Distributed System." 
Proceedings of the Eighth Symposium 
on Operating Systems Principles, 
December 1981, pp. 169-177. 

Redell, D. D., Dalai, Y. K., Horsley, 
T. R., Lauer, H. C., Lynch, W. C., 
McJones, P. R., Murray, H. G., 
Purcell, S. C. 
"Pilot: an Operating System for a 
Personal Computer." 
Communlaatlons of the ACM, 23, 2 
(February 1980), pp. 81-91. 

Ritchie, D. M., Thompson, K. 

40 



STUR 80 

SVOB 79 

SWIN 79 

WARD 80 

"The UNIX time-sharing system" 
Communications of the ACM, 17, 
(July 1974), pp. 365-375. 

Sturgis, H., Mitchell, J., Israel, 
J. 
"Issues in the Design and Use of a 
Distributed File Server." 
Operating Systems Review, 14, 3 (July 
1980), pp. 55-69. 

Svobodova, L., Liskov, B., Clark, D. 
Distributed Computer Systems: 
Structure and Semantles. Technical 
Report LCS/TR-215, Laboratory for 
Computer Science, M.I.T., Cambridge, 
Mass., March ;979. 

Swinehart, D., McDaniel, G., Boggs, 
D. 
"WFS: A Simple Shared File System for 
a Distributed Environment." 
Proceed ings  o f  t he  Seventh  Symposium 
on Operating Systems Principles, 
December 1979, pp. 9-;7. 

Ward, S. 
"TRIX: A Network-orlented Operating 
System." 
P r o c e e d i n g s  o f  COMPCON '80, San 
Fransisco, Feb. 1980. 

WULF 74 Wulf, W., Cohen, E., Corwln, W., 
Jones. A., Levln, R., Pollack, F. 
"Hydra: The Kernel of a 
Multiprocessor Operating System." 
Communications o f  the  ACM, 17, 6 
(June 1974), pp. 337-345. 

41 


