
Proceedings of the 1985 ACM Computer Science Conference-Agenda for Compunng Research: The Challenge for Creativity, 1985 March 12-14

The File System of an Integrated Local Network
Paul J. Leach, Paul H. Levlne,

James A. Hamllton, and Bernard L. Stumpf

Apollo Computer, Inc.
16 Elizabeth Drive, Chelmsford, MA 01824

Abstract

The distributed file system component of
the DOMAIN system is described. The DO-
MAIN system is an architecture for networks
of personal workstations and servers which cre-
ates an integrated distributed computing envi-
ronment. The distinctive features of the file sys-
tem include: objects addressed by unique iden-
tifiers (UIDs); transparent access to objects, re-
gardless of their location in the network; the
abstraction of a single level store for accessing
all objects; and the layering of a network wide
hierarchical name space on top of the UID based
flat name space. The design of the facilities is
described, with emphasis on techniques used to
achieve performance for access to objects over
the network.

1. Introduction

This paper describes the design of the distributed
file system for the Apollo DOMAIN operating system.
DOMAIN is an integrated local network of powerful
personal workstations and server computers ([APOL
811, [NELS 811); both of which are called nodes. A
DOMAIN system is intended to provide a substrate on
which to build and execute complex professional, engi-
neering and scientific applications ([NELS 831). Other
systems built following the integrated model of dis-
tributed computing include EDEN [LAZO 811 and LO-
CUS [POPE 811.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1985 ACM 0-89791-ISO-4/85/003/0309 $00.75

Within the DOMAIN system, the network and the
distributed Ale system contribute to this goal by al-
lowing the professional to share programs, data, and
expensive peripherals, and to cooperate via electronic
mail, with colleagues in much the same manner as on
larger shared machines, but without the attendant dis-
advantage of sharing processing power. Cooperation
and sharing are facilitated by being able to name and
access all objects in the same way regardless of their
location in the network.

Thus, when we say that DOMAIN is an integrated
local network, we mean that all users and applications
programs have the same view of the system, so that
they see it as a single integrated whole, not a collec-
tion of individual nodes. However, we do not sacrifice
the autonomy of personal workstations to achieve in-
tegration: each personal workstation is able to stand
alone, but the system provides mechanisms which the
user can select that permit a high degree of cooperation
and sharing when so desired.

Another reason we say that DOMAJN is an inte-
grated local network is that each machine runs a com-
plete (but highly configurable) set of standard software,
which (potentially) provides it with all the facilities it
normally needs - Ale storage, name resolution, and so
forth. In contrast are server-based distributed systems,
wherein network wide services are provided by desig-
nated machines (“servers”) which run special purpose
software tailored to providing some single service or
smal1 number of services (e.g. Grapevine [BIRR 821,
WFS [SWIN 791, and DFS [STUR SO]). DOMAIN has
server nodes; however, they are created by configur-
ing the standard hardware and software for a special
purpose - a “Ale server” node, say, is created using a
machine with several large disks and system software
configured with the appropriate device drivers.

1.1. Organization

The rest of this paper is organized as follows. The
remainder of this introduction briefly descibes the hard-
ware environment on which the system runs. Section
2 provides an overview of the Ale system, and breaks

309

F’roceedmgs of the l!85 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

it into four major component groups. Section 3 gives a
block diagram of the Ale system structure, and a brief
description of each module, locating it within one of the
component groups. Sections 4, 5, 6, and 7 each describe
one of these component groups. Finally, section 8 fo-
cuses on those aspects of the design which we believe
have contributed most to the efilciency of the system.

1.2. Hardware Environment

A DOMAIN system consists of a collection of
powerful personal workstations and server computers
(generically, nodes) interconnected by a high speed lo-
cal network.

1.2.1. User Interface

Users interact with their personal nodes via a dis-
play subsubsystem, which includes a high resolution
raster graphics display, a keyboard and a locating de-
vice (mouse, touch pad, OF tablet). A typical display
has 800 by 1024 pixels, and bit BLT (bit block trans-
fer) hardware to move arbitrary rectangular areas at
high speed. Server nodes have no display, and are con-
trolled over the network. More information on the user
environment can be found in [NELS 841.

1.2.2. CPU

There are several models of both personal and sever
nodes. Their ‘tick’ times [LAMP 801 range from .4
to 1.25 microseconds; their maximum main memory
ranges from 3.5 megabytes to 8 megabytes. Most per-
sonal nodes have 33 to 154 megabytes of disk storage
and a 1 megabyte floppy disk, but no disk storage is
required for a node to operate. Server nodes configured
as file servers can have 300-1000 megabytes or more
of disk storage; those configured as peripheral servers
can have printers, magnetic tape drives, plotters, and
so forth.

All nodes have dynamic address translation (DAT)
hardware which supports up to 128 processes, with
each process able to to address 16 or 256 megabytes
of demand paged virtual memory (depending on CPU
model). The DAT hardware on some models uses a re-
verse mapping scheme, similar to that used in the IBM
System/38 [HOUD 781; it is a large, hardware hash
table keyed by virtual address, with the physical ad-
dress given by the hash table slot number in which a
translation entry is stored. Other models use a forward
mapping scheme, similar to the VAX [DEC 79j or Sys-
tem/370 [IBM 761. The DAT also maintains used and

modifled statistics on a per page basis for the use of page
replacement software, and access protection controlling
read, write and execute access. The differences between
the DATs of the different models are abstracted away
by an &&iu (memory management unit) module.

1.2.3. Network

The network is a 12 megabit per second baseband
token passing ring (other ring implementations are de-
scribed in [WILK 791, [GORD 791; and reasons for pre-
ferring a ring network in [SALT 791. [SALT 811). Each
node’s ring controller provides the node with a unique
node ID, which is assigned at the factory and contained
in the controller’s microcode PROMS. The maximum
packet size is 2048 bytes. The controller has a broad-
cast capability.

We will not discuss the network further here; for
purposes of the Ale system, all that is required is that
the it deliver messages with high probability and low
CPU overhead. For more information on the ring con-
troller and data link layer protocols see [LEAC 831.

2. File System Overview

The DOMAIN fiIe system is actually made of four
distinct components: an object storage system (OSS),
the single level store (SLS), the lock manager, and the
naming server. (See figure 1 for a block diagram.)

The OSS provides a flat space of objects (storage
containers) addressed by unique identiilers (UIDs). Ob-
jects are typed, protected, abstract information con-
tainers: associated with each object is the UID of a
type descriptor, the UID of an access control list (ACL)
object, a disk storage descriptor, and some other at-
tributes: length; date time created, used and modi-
Aed; reference count; and so forth. Object types in-
clude: alphanumeric text, record structured data, IPC
mailboxes, DBMS objects, executable modules, directo-
ries, access control lists, serial I/O ports, magnetic tape
drives, and display bit maps. (Other objects which are
not information containers also exist. UIDs are used
to identify processes; and to identify persons, projects,
organizations, and protected subsystems for authenti-
cation and protection purposes.) The distributed OSS
makes the objects on each node accessible throughout
the network (if the objects’ owners so choose by setting
the objects’ ACLs appropriately). The operations pro-
vided by the OSS on storage objects include: creating,
deleting, extending, and truneating an object; reading

310

F’rweediigs of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

or writing a page of an object; getting and setting at-
tributes of an object such as the ACL UID, type UID,
and length: and locating the home node of an object.
The OSS automatically uses a node’s main memory as a
cache of recently used pages, attributes, and locations
of objects, including remote ones. It does nothing to
guarantee cache consistency between nodes; however,
it does provide mechanisms that the lock manager can
use to make and enforce such guarantees.

A unique aspect of the DOMAIN system is its net-
work wide single level store (SLS). (Multics [ORGA 721
and the IBM System/38 [FREN 781 are examples of a
single level store for centralized systems.) Programs ac-
cess all objects by presenting their UIDs and asking for
them to be n mapped” into the program’s address space
(see [REDE SO] on the desirability of mapping in dis-
tributed systems); subsequently, they are accessed with
ordinary machine instructions, utilizing virtual memory
demand paging.

The purpose of the single level store is not to create
network wide shared memory semantics akin to those
of a closely coupled multiprocessor; instead, it is a form
of lazy evaluation: only required portions of objects are
actually retrieved from disk or over the network. An-
other purpose ls to provide a uniform, network trans-
parent way to access objects: the mapping operation
is independent of whether the UID is for a remote or
local object. As long as programs make the worst case
assumption that their objects are not local, and hence
that operations on them are subject to communication
failures, they need not be aware of their location. (See
[POPE 811 on the desirability of network transparency.)

The lock manager serializes multiple simultaneous
access to objects by many processes, including ones on
different nodes. A process must lock an object prior
to its use; the lock manager arbitrates lock requests,
and uses the sequence of requests to keep main memory
caches consistent.

The naming server allows objects to be referred to
by text string names. It manages a collectioti of di-
rectory objects which implements a hierarchical name
space much like that of Multics or UNW [RITC 741.
The result is a uniform, network wide name space, in
which objects have a unique canonical text string name
as well as a UID. The name space supports convenient
sharing, which would be severely hampered without
the ability to uniformly name the objects to be shared
among the sharing parties.

‘UNIX Is a trademark of Bell Laboratories.

3. File System Structure

Figure 1 shows a block diagram of the iile sys-
tem. Each of the major component groups is indicated
by a different form of shading. The arrows between
blocks indicate call dependencies; in addition, all mod-
ules above the “pageable” boundary have an implicit
dependency on the SLS.

The system is stuctured using a data abstraction
approach, sometimes called a “type manager” approach
when applied to operating systems ([JANS 761). Each
module has a set of operations and a private database
in which to record its state. Thus, in describing the
components of the system, we will identify the man-
agers which comprise that component, and then, for
for each manager, the essential operations provided by
that manager, and an indication of the form of the
database and algorithms used to implement the opera-
tions. (Note: in the descriptions of calls in this paper,
irrelevant details have often been suppressed for ease of
exposition; the intent is to capture the semantic flavor
of the interfaces, not their precise syntax.)

4. Object Storage System

The OSS is the DOMAIN counterpart of dls-
tributed Ale systems such as WFS [SWIN 791 and DFS
[STUR 801. The purpose of the OSS is to provide per-
manent storage for objects, and to allow objects to be
identifled by and operated on using UIDs, independent
of their location in the network.

At the level we will discuss here, an object is just a
data container: an array of uninterpreted data bytes, or
more precisely, an array of pages (1024 byte units into
which objects are divided}. Other object attributes,
s.uch as it’s type descriptor and access control list are
not used by the OSS, but are simply stored for the
use of higher levels. (Not all objects are represented by
storage containers: for example, processes are identifled
by UIDS, but are not associated with any permanent
storage.)

The OSS consists of several component subgroups:
a local OS’S, remote OSS, cached OSS, and an object lo-
cating service. The top-level location independent OSS
abstraction is created utilizing these services.

4.1, Identifying Objects

UIDs of objects are bit strings (64 bits long); they
are made unique by concatenating the unique ID of the

311

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

1 User
I I

I
I

h
: .:. ., : .’ : : ..

I I ..‘.,I. Name I : I
I
I =
I

3upervisor

f : ,: : ; .:. ” y “. j I
J I

To Datagr

---Lpc

-am

I I I I I

of Contents

I I I
To Net Hardware

Legend:

Local OSS-

Cached OSS IT{

Lock Manager ‘~;/i:j;;.~~;;;: fTT7

Name Server I-:]

File System Structure
312

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

node generating the UID and a time stamp from the
node’s timer. (The system does not use a global clock.)
UlDs are also Jocation independent: the node lD in an
object’s ULD can not be considered as anything more
than a hint about the current location of the object.
(More detail on the use and implementation of UIDs is
presented in [LEAC 821.)

At any point in time, the permanent storage for an
object resides entirely at only one node; also, the system
never attempts to transparently move it to a different
node. So, for every object there is always one distin-
guished node which is its “home”, and which serves as
the locus of operations on the object. Above the OSS
level, only UIDs are used to address objects: an opera-
tion whose UID addresses a remote object is sent to the
object’s home node to be performed.

4.2. Local OSS

This subgroup provides access to local objects: i.e.,
those objects stored on disk volumes which are attached
to the node accessing them. It provides operations to
create and delete local objects, and to access the at-
tributes and contents (pages) of existing objects (see
figure 2). There are two managers in this group: the
VTOC (volume table of contents) and the BAT (block
allot ation table).

The VTOC for a volume contains an entry for
each object on the volume; an object’s VTOC entry
contains the object’s attributes and the root of its file
map, which translates page numbers within an object to
disk block addresses. (VTOC entries are very similar to
UNIX inodes ITHOM 781.) The VTOC is organized as
an associative lookup table keyed by object UID, which
permits rapid location of an object’s VTOC entry given
its UID. (Using a large direct mapped hash table with
chained overflow buckets and avoiding high utilization,
the average lookup time is just over one disk access.)

To access the contents of an object requires two
steps: translate the object reference to disk block ad-
dress, then read (or write) the disk block. (An object
reference is a pair consisting of the object’s UID and
a page number within the object.) The VTOC only
provides operations to do the translation, not the reads
or writes, because the translations are then cached and
used by the cached OSS (see below). The translation
is done by reading or writing the flle map for 32 page
units of the file called segments.

The BAT for a volume keeps track of which disk
blocks are available for allocation on that volume. The
principle operations on the BAT are ones to allocate

allocate - allocate a VTOC entry for an empty object and
set its attributes

The object is created on the local disk vol-
ume specified by ‘vol-ind’ex’. The object de-
scriptor contains the object’s UID and initial
attributes.

FUNCTION allocate(vol-index, obj-decriptor): vtoc-index

look up - get the VTOC index of an object
FUNCTION lookup(vol-index, obj-uid): vtoc-index

read - get the VTOC entry of an object given its VTOC
index

Attributes in the ‘vtoc-entry’ include: object
UID; type UID; ACL UID; length; time cre-
ated, used, and modified; reference count, etc.

FUNCTION read(vol-index, vtoe-index): vtoc-entry

write - write the VTOC entry of an object given its VTOC
index

Note: overwriting a VTOC entry for an object
with an empty VTOC entry has the effect of
deleting the object.

FUNCTION write(vol-index, vtoc-index, vtoc-entry)

read-im - get the file map ior a segment of an object

Object are divided intb 32 page segments; the
‘seg-no’ indentifies the segment; the ‘file-map’
is an array of 32 disk block addresses, one for
each page in the segment.

FUNCTION read-fm(vol-index, vtoc-index, seg-no): file-map

write-fm - write the file map for a segment of an object
FUNCTION write-fm(vol-index, vtoc-index, seg-no, file-map)

Figure 2: Sample VTOC Operations

313

and free disk blocks. One interesting feature is that
the allocation operation aids in creating locality of the
pages within an object on the disk. One of the input
parameters of the allocation operation is a disk block
address; an attempt is made to make the newly allo-
cated block as close as possible to it. When a new page
is being added to an object, this parameter is usually
set to the disk address of the previous logical page of

that object. We observe that this causes much better
clustering of objects on the disk than not doing any-
thing at all, except when the disk is nearly full. (We
have not analyzed the benefit quantitatively. Also, to
get really good locality, St is probably necessary to use
the more comprehensive methods of [MCKU 841.)

4.3. Cached OSS

Disk operations and remote operations are both
expensive, so it is desirable to avoid them when possible.
One means of doing so is to cache recently obtained
results of such operations, and reuse them when it can
be ascertained that they are still valid.

The cached OSS consists of the AST, PMAP, and
MIHAP managers. The AST (active segment table)
caches locations, pages, and attributes of active (re-
cently used) objects, whether local or remote. Each
entry in the AST contains the UID, location and at-
tributes of an object, plus the PMAP for one segment
of the object. The PMAP (page map) for a segment con-
tains the Ale map for that segment, plus references to all
resident main memory pages. Part of the maintenance
of PMAPs ls done by the purifier process, which period-
ically writes back modified pages to secondary storage
(local or remote, as need be). The w (memory
map) is the allocator of main memory pages, and keeps
track of their contents.

The AST provides operations to access pages and
attributes (including locations) of objects (see flgure 3).
If the requested information is not in its cache (or
PMAP’s), then it uses the local or remote OSS to get
the necessary information and encache it. The touch
operation fetches object contents (pages). (There is no
write operation; pages are modified via the single level
store while in the cache, then written back later by the
PMAP purifier process.) The get-attr operation fetches
object attributes, and set-attr allows objects’ attributes
to be individually changed.

The AST also provides operations to manage its
cache’s consistency with that of other nodes, and which
are designed to be used by the lock manager: it only
allows access to objects if they are properly locked; it

Roceediigs of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

touch - cause several consecutive pages of an object to be
cached in main memory

Cause ‘n’ pages pages starting with ‘page-
num’ of object with UID ‘object-uid’ to be
cached. The object ‘location’ is the ID of the
remote node or local volume where the object
resides.

FUNCTION touch(location, object-uid, page-num, n): phys-
page-list

get-at& - get an object’s attributes

Attributes in the ‘attr-ret’ include: type UID;
ACL UID; length; time created, used, and
modified; reference count, etc.

FUNCTION get-attr(object-uid): attr-ret

set-attr-X - set attribute X of an object

This is a set of operations, where X can be
replaced by any of the attributes above.

PROCEDURE set-attr-X(object-uid, X-value)

cond-flush - remove stale pages of an object from the cache

The boolean ‘hushed is true if any stale data
was flushed.

FUNCTION cond-flush(object-uid, dtm): flushed

purify - send all modified pages of an object back to its
‘home’ node

if ‘force’ is true, write the pages to disk imme-
diately at the home node, else just leave them
in the home node’s cache.

PROCEDURE purify(object-uid, force)

Figure 3: Sample AST Operations

314

proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March EL-14

maintains a version number for each object; and it pro-
vide operations to control the contents of the cache.

4.3.1. Lock Enforcement

As one of its attributes, each Ale system object has
a lock key. The lock key is set to either a network node
ID or one of (for now) two special values: readbyall
and writebyall. When an object’s lock key is set to N,
only OSS requests from node N are processed. All other
requests are denied with an error indication of concur-
rency violation. When the lock key is set to readbyall,
read requests (for pages and attributes) from every node
are allowed while all write requests are denied regardless
of their source. Finally, a lock key value of writebyall
completely disables the OSS level concurrency control
checking and so all requests are always fulfilled.

4.3.2. Object Versions

A time stamp based version number scheme is used
to support the cache validation mechanism. An object’s
version number is its date-time modified (DTM) at-
tribute. (See [KOHL 811 for a survey of distributed con-
currency techniques.) Every object has a DTM with 8
millisecond resolution associated with it, which records
the time the object was last modifled.

The DTM of an object is maintained at its home
node. When an object is modified by locally originating
memory writes, the page modifled bits in the DAT hard-
ware record that fact; periodically, the modifled bits are
scanned and cause the object’s DTM to be updated. If
an object is modified by a remote node, eventually the
object’s modified pages are sent back to the home node;
the paging server updates an object’s DTM in response
to remotely originating OSS requests to write its pages.

In addition, every node also remembers the DTM
for all remote objects whose pages it has encached in its
main memory. Every time a page of an object is read
from or written back to its home node, the latest DTM
is sent with the network reply message. Recall that the
requests for page level operations are filtered through
the lock key based low-l&e1 concurrency control.

4.3.3. Content Control

There are s?Treral operations explicitly provided by
the AST to allow for csche management by higher level
synchronization mechanisms.

1. A conditional flush operation expunges from the
cache all pages of an object that are not from

create - create an object

the new object is created on the same node as
‘lot-object-uid’

FUNCTION create(loc-object-uid): new-object-uid

delete - delete an object
PROCEDURE delete(object-uid)

locate - return the node address of the home node of an
object
FUNCTION locate(object-uid): node-id

Figure 4: Sample FILE Operations

2.

3.

4.

the current version of the object. (This is used
by the lock manager when it discovers that the
DTM associated with the cached pages of an ob-
ject is different from the object’s real DTM.)

A get-at& operation returns (among other at-
tributes) the DTM of the current version of an
object.

A purification operation sends copies of all mod-
ified pages of an object back to the home node
of the object (but leaves the pages encached for
possible later use). (This is used by the lock
manager at unlock time.)

A force write variant of the purification opera-
tion causes a page to be written to permanent
store on its home node: its purpose is to be a
minimally sufficient toe hold with which to im-
plement more complex atomic operations.

We shall see that using by using the AST’s lock en-
forcement, object version, and cache content control fa-
cilites, the lock manager can effectively guarantee cache
consistency for all clients who obey the system locking
rules (see section 6).

4.4. Location Independent OSS

Location independent access to objects is provided
by the SLS and the location independent OSS. The SLS
provides access to the contents of already existing ob-
jects, while the location independent OSS provides ac-
cess to object attributes, and supports object creation
and deletion.

315

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

The location independent 0% consists of the FILE
manager, and the HINT manager. The FILE manager
exports the attribute access and cache control opera-
tions of the AST to user programs in a location in-
dependent way. In addition, it implements a create
operation to create new objects, a delete operation to
destroy them, and a locate operation to return the node
ID of the home node of an object (see figure 4). To cre-
ate location independence, the FILE manager uses the
HINT manager to determine the location of an object,
then either does the operation locally (using the local
or cached OSS), or uses the services of REMFILE (see
below) if it must go remote.

The HINT manager is the backbone of the locat-
ing service: given an object’s UID, it Ands the ID of the
node on which an object resides. This is the fundamen-
tal distributed algorithm in the system: no global state
information is kept about object locations. Instead, a
heuristic search is used to locate an object. Complete
details are in [LEAC 821, including design considera-
tions and the evolutionary history of the algorithm. To
summarize briefly, the current algorithm relies heavily
on hints about object location. One source is the node
ID in the object’s UID, another is the hint file. Any time
a software component can make a good guess about the
location of an object, it can store that guess in the hint
Ale for later use; one particularly good source of hints
is the naming server, which guesses that objects are
co-located with the directory in which they are cata-
logued. If all hints fail to locate the object, then the
requesting node’s local disk is searched for the object.
The algorithm works because, although it is possible
for objects to do so, they rarely move from the node
where they were created; and if they do, then the nam-
ing servers hint will nearly always be correct. A last
resort, which would be completely sufficient, would be
to accept user input into the hint file: this has not yet
been implemented, as it hasn’t really been needed.

4.5. Remote OSS

The remote OSS is separated into two parts which
are at two very different layers of the system: the NET-
WORK manager, which provides remote access to the
attributes and contents of already existing objects; and
the REMFILE manager, which provides facilities to re-
motely create and delete objects. This is in contrast to
the local OSS, where one set of managers provides both
capabilities; the purpose is to separate the pieces of the
remote OSS which are needed to resolve page faults
from those which are not. This both minimizes the

amount of code and data which must be permanently
resident in main memory in order to implement vir-
tual memory, and allows the REMFILE manager to use
the virtual memory provided by the SLS. Both NET-
WORK and REMFILE are location dependent abstrac-
tions: in order to access a remote object, its location
must already be known. Both of these managers can
be thought of as hand-coded stubs for a simple form of
remote procedure call (RPC) [BIRR 841.

The NETWORK manager is divided into a client
side and a server side. The client side is used by
the cached OSS to access the attributes and contents
(pages) of already existing remote objects that are not
in the main memory cache. When the client side is
called to make a remote access, it is given the request
parameters and the node ID of the home node of the
object being accessed. (The request parameters always
include the UID of an object, and, for a read page re- .
quest, would include the page number of the object to
read, for example). It packages the request parame-
ters into a message, sends it to the given node using the
low-level socket datagram IPC and waits for a response.
Since the requests are all idempotent, it can use a very
simple request-response protocol ([SPEC 821); for more
details on sockets and protocols see [LEAC 831.

The server side uses a remote paging server pro-
cess to handle client requests, which services all re-
motely originating requests to read or write pages and
attributes of objects on that node. The paging server
has a socket assigned to it, with a well known ID, upon
which it receive requests; it uses the local access mech-
anism to fulfill those requests. Remote paging oper-
ations are requested via (UID, page number) pairs
only, never by disk address, and other remote opera-
tions only via UIDs; thus, a node never depends on any
other node for the integrity of its object store. (This
is one of the reasons the system is truly a collection of
autonomous nodes - to which are added mechanisms
permitting a high degree of cooperation - as distin-
guished from, say, a locally dispersed loosely coupled
multiprocessing system.)

The REMFILE manager is also divided into client
and server sides, and except that the operations are to
create and delete objects, its structure is nearly identi-
cal to the NETWORK manager. The server side uses
a remote file server process; it services client requests
by calling the FILE manager to service requests. REM-
FILE also handles remote lock requests for the LOCK
manager; see section 6.

316

5. Single Level Store

The single level store concept means that all mem-
ory references are logically references directly to ob-
jects. This is in contrast to a multi-level store, which
typically has a “primary” store and one (or more) “sec-
ondary” store(s): only the primary store is directly ac-
cessible by programs, so they have to do explicit “I/O”
operations to copy an object’s from secondary to pri-
mary store before the data can be accessed. To make
the distinction between primary and secondary store
transparent, a single level store has to manage main
memory as a cache over the object store: fetching ob-
jects (or portions of objects) from permanent store into
main memory as needed, and eventually writing back
modified objects (or portions thereof) to the permanent
store. SLS is thus a form of virtual memory, since all
referenced information need not (indeed could not) be
in main memory at any one time.

Our implementation of SLS has many aspects in
common with implementations of SLS for a centralized
system: main memory is divided into page frames; each
page frame holds one object page; main memory is man-
aged as a write-back cache; DAT hardware allows refer-
ences to encached pages at main memory speeds, If an
instruction references a page of an object which is not in
main memory, the DAT hardware causes a page fault,
and supplies the faulting virtual address and the ID of
the faulting process to software. The page fault han-
dler finds a frame for the page; reads the page into the
frame; updates the DAT related information to show
that the page is main memory resident; and restarts or
continues the instruction.

The SLS is implemented by the MST manager,
which comes in two modules: one which is permanently
resident, called MST-wired; and one which is pageable,
called MST-unwired. Both manipulate a per process
table, the Mapped Segment Table (MST), which trans-
lates a virtual address to a (UID, page number) pair.

MST-unwired implements a map operation, which
adds an object to the address space of a process given
the object’s UID; an unmap operation, which removes
an object; a get-uid operation to inquire about the ob-
jects in an address space; and a set-touch-ahead-cnt
operation to cause read-ahead on page faults. To map
an object into the address space, an entry deflning the
(virtual address, UID) association is made in the
MST; unmapping just removes the appropriate entry.
None of these operations are required while servicing a
page fault; thus, the module can be pageable.

MST-wired implements a touch operation, which

P~~~eediigs of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

map - make an object accessible through a virtual address
space range
FUNCTION map(object-uid, protection, grow-ok, out obj-
length): virt-addr

unmap - remove an object from the address space
PROCEDURE unmap(virt-addr)

getuid - get the UID of a mapped object

FUNCTION getuid(virt-addr): object-uid

set-touch-ahead-cnt - set demand paging cluster factor for
a mapped object

Causes pages of the object to be read/written
in ‘cluster-size’ units.

PROCEDURE set-touch-ahead-cnt(virt-addr, cluster-size)

touch - cause a page to be cached in main memory

The page refered to by virtual address ‘virt-
addr’ is brought into memory, and the MMU is
loaded with the ‘virt-addr’ <-> ‘phys-page-
addr’ association.

PROCEDURE touch(virt-addr): phys-page-addr

wire - cause a page to be cached in main memory and made
non-pageable
PROCEDURE wire(virt,-addr): phys-page-addr

find - find the phyical page address for a virtual address

Optionally wire the page if ‘wire-flag’ is true.

PROCEDURE find(virt-addr,wire-flag): phys-page-addr

Figure 5: Sample MST Operations

317

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

for a given virtual address, causes the object page asso-
ciated with it to be cached in main memory. The touch
operation is given the virtual address of the faulting
page, which it looks up in the MST to get the UID of
the object mapped at that address; fetching the page
is then just a request to the OSS, even if the page be-
longs to a remote object {see figure 5). If the touch
ahead count is more than one, it will also pre-fetch suc-
ceeding pages of the object. Other operations include
a wire operation, which is similar to touch, except that
the page is made permanently resident as well; and a
find operation, which returns the main memory address
of a page if it is resident.

What distinguishes our implementation from a cen-
tralized one is the necessity of dealing with multiple
main memory caches: in fact, one for each node in the
network. This leads to the problem of synchronizing
the caches in some way: of flnding and fetching the
most up-to-date copy of an object’s page on a page
fault, and of avoiding the use of “stale” pages (ones
that are still in a node’s cache, but have been more
recently modifled by another node). The objective of
synchronization is to give programs a consistent view
of the current version of an object in the face of (po-
tentially) many updaters. A second objective is that
the synchronization algorithm should be quite simple
and need only a small data base, as it would be part
of the SLS implementation and hence be permanently
resident in main memory.

These objectives appeared, for practical purposes,
to be mutually exclusive, so our SLS implementation
does not guarantee consistency or the use of the cur-
rent version. Instead, the implementation does provide
operations and information from which a higher level
can build a mechanism that makes the stronger guar-
antees. In addition, the higher level can use the virtual
memory provided by SLS, and thereby be in large mea-
sure freed of the constraints mentioned earlier on the
size of it and its data base. The system provides a
readers/writers locking mechanism at the higher level:
however, other clients are free to construct their own
synchronization mechanism at this level if they do not
wish to use ours.

6. Lock Manager

lock - lock an object

See text for explanation of ‘obj-mode’; ‘acc-
mode’ is one of read, write, or read-intend-
write. The boolean ‘locked’ is returned true if
the object was locked; the caller never waits.

FUNCTION lock(object-uid, obj-mode, act-mode): locked

relock - change the access mode of an lock

The boolean ‘changed’ is returned true if the
access mode was changed.

FUNCTION relock(object-uid, act-mode): changed

unlock - unlock an object
FUNCTION unIock(object-uid, act-mode)

read-entry - find the lock entry record for an object

the ‘lock-ret’ contains the object uid, process
uid of the locking process, the object and ac-
cess modes of the lock, and a transaction ID
(see text).

FUNCTION read-entry(object-uid): lock-ret

iter-entry - iterate through all locked objects

if ‘volume-uid’ is non-nil, restrict the iteration
to just objects on that volume; ‘N’ starts at
0, and after each call is the index of the next
entry to be returned.

FUNCTION iter-entry(volume-uid, N, object-uid): lock-ret

Figure 6: Sample LOCK Operations

The LOCK manager provides clients of the file sys-
tem the means to obtain control over an object and to
block processes that wish to use the object in an in-
compatible way. The tools that the lock manager has

318

Prowedmgs of the 1!%5 ACM Computer Science Conference--Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

at its disposal are its own lock data base and the lock
key attribute associated with each object.

The lock operation supports two locking modes for
objects. The more familar is the many readers or single
writer lock mode [HOAR 741. A co-writers (co-located
writers) lock mode is also provided, which makes no re-
strictions on the number of readers and writers, but de-
mands that they be co-located at a single network node.
This mode allows the use of shared memory semantics,
but only among processes located at the same node.
(Guardians [LISK 791 employ this same notion, but at
the level of linguistic support for distributed computa-
tion.) For either mode, several types of access mode are
supported: read, write, read with intent to write later
[GIFF 791.

Other operations include: unlock, to unlock an ob-
ject; relock, to change one type of lock to another with-
out unlocking; read-entry, to inquire whether an object
is locked, and if so, how; and iter-entry, to list all locked
objects on a node.

An instance of the lock manager exists on every
network node, and each lock manager keeps its own
lock data base. This data structure records all of the
objects, local or remote, that are locked by processes
running on the local node. The same structure also
records locks that remotely running processes are hold-
ing over local objects. Lock and unlock requests for
remote objects are always sent to the home node of the
object involved, and both the requesting node and the
home node update their data bases. The LOCK man-
ager uses the REMFILE manager to handle the remote
requests.

The lock manager enforces compatible use of an
object by not granting conflicting lock requests. How-
ever, it guards against accidental or malicious subver-
sion of the locking mechanism by communicating its
current intent to the OSS on a per object basis through
the lock key. When an object is locked in a way that ex-
cludes any writers, the lock manager sets its lock key to
the readbyall value. When an object is locked for use
by a single writer, the lock manager sets its key to the
node ID of the writing process. This causes both reads
and writes from any other node in the network to be
refused as concurrency violations. Today’s implemen-
tation of the lock manager does not use the writebyall
value for the lock key, however newly created objects
have their lock key initialized to this value.

Locks are either granted immediately or refused;
processes never wait for locks to become available, so
there is no possibility of deadlock (but indefinite post-
ponement is of course possible). This kind of locking

is not meant for distributed database types of transac-
tions, or for providing atomicity in the face of node fail-
ures, but for human time span locking uses such as file
editing. For this same reason, locks are not timed out,
since realistic time outs would be unreasonably long.

6.1. Cache Consistency

In a centralized virtual memory system, the main
memory is the single cache over the permanent storage
of a file system object. Since all of the users (both
simultaneous and serial) of an object run on the same
system, the memory cache is common to each of them
and so no cache validation need ever be done. When the
object is “unlocked” by one process, its pages may stay
in the main memory cache for awhile, and if another
process comes along to use the same file, that second
process will always see the latest version of the object.

In the DOMAIN distributed SLS the simultaneous
users of a particular file are either all readers (in which
case the data they see is identical), or all processes run-
ning on the same node (in which case the main memory
cache they see is the same as in the case of a single
centralized system). All other simultaneous uses of a
Ale system object are unsupported by the DOMAIN file
system. However, we would like serial users of an ob-
ject in the DOMAIN Ale system to each correctly see
all changes made to the Ale by earlier users.

The simplest demonstration of the problem we
faced requires two nodes A and B. Suppose a one page
long file system object 0 resides on a disk that is phys-
ically connected to node A. A process on B locks the
object 0 and reads its single page. That page moves
through the network from A to B and ends up in the
main memory of system B. After studying the page for
some time, the process on B unlocks the Ale and goes
about its business. A short time later, another process
on B wants to read the same Ale 0. It locks 0 for read-
ing and accesses that page. We wanted the second user
of 0 to be able to dependably use (or knowingly dis-
card) the COPY of the page cached in B’s main memory.
It should be able to use that page (without refetching
it from the network) if the file 0 has not been modified
since the page was fetched, and it must refetch the page
if the Ale has been modified. In this case, we needed to
be able to answer the question: Did a process on A
modify 0 between the time the page was delivered to
B and the time the second B process wanted to use it?
The mechanism described below allows us to efficiently
answer that question, and to invalidate the cached copy
if it was modified by A.

319

Proceedings of the 198.5 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity. 1985 March 12-14

The version number (DTM) kept by the AST for
each object can be used to synchronize main memory
caches, as follows. The remote user of an object can
prove the validity of his cached copy by verifying that
the current DTM (as kept by the home node of the ob-
ject) is identical to the DTM his node has remembered
for the cached pages. Should they be different, the lo-
cally cached pages need to be invalidated. The lock
manager performs this validation at lock time for all
remote objects: a request to lock a remote object that
is granted returns the current version number (DTM)
of the object, which is used in a conditional flush oper-
ation, thereby removing stale pages of the object from
the requesting nodes main memory.

A second version of the caching problem is to insure
that if (extending the example above) the first B pro-
cess to use 0 had modified the object, that the change
be available to a process on A that wants to use the
object immediately after the B process releases it. To
guarantee correctness in this case, copies of all changed
pages of remote objects are delivered back to their home
node before the object is unlocked. This function is
performed by the lock manager as part of the unlock
function: a request to unlock a remote object ilrst puri-
fies the object (forces modified pages back to the home
node), then frees the lock to make the object available.

Note that concurrency violations can only occur in
multi-node situations: if an object is never locked, and
is used by only one node, that node is the only source
of version number changes, and will hence always see
a consistent view of the current version. This is why
the LOCK and HINT managers’ state can be stored in
virtual memory: the objects that store their code and
data do not need to be locked because they are only
used on one node.

6.2. Discussion

This two-layer approach to concurrency manage-
ment has several desirable attributes. First is that it
allows the (presumably) more complicated and larger
higher level protocol to use the services of OSS to main-
tain its data base. Second is its flexibility. Changes
to the higher-level lock manager can be accomplished
without affecting the OSS-level implementation at all.
Also, because &e operations to manage the cache are
exported, clients can &plement their own schemes, any
number of which can coexist as long as they manage
disjoint sets of objects. Lastly, the burden of lock key
checking assigned to the per-page operations at the OSS
level is very slight compared to the lock manager’s data

base maintenance.

One restriction that it would be desirable to re-
lax is that the concurrency granularity of the current
implementation is at the level of entire objects. The
lock key as described is insufficient for some forms of
concurrency control. However, if the higher-level pro-
tocols wanted to take on the entire control task, the
lock key could be set to its writebyall value to disable
concurrency checking by the OSS-level. Note that the
per-object techniques described above, but with a ver-
sion number (DTM) per p&ge, would allow page level
concurrency control. We already store the DTM with
each page on backing store; thus keeping one DTM per
main memory page frame would suffice for this exten-
sion.

7. Naming Objects

For users, UIDs are not a very convenient means
to refer to objects; for them, text string names are
preferable. However, like UIDs, they should be uni-
form throughout the network, so that the name of an
object does not change from node to node. In DO-
MAIN, text string names for objects are provided by a
directory subsystem layered on top of the single level
store. The name space is a hierarchical tree, like Mul-
tics [ORGA 721 or UNIX [RITC 741, with directories
at the nodes and other objects at the leaves. A direc-
tory is just an object, with its own UID, containing pri-
marily a simple set of associations between component
names (strings) and UIDs. (A symbolic link facility, like
that of Multics, is the other major feature of directo-
ries.) A single component name is resolved in the con-
text of a particular directory by Anding its associated
UID (if any). The absolute path name of an object is
an ordered list of component names. All but (possibly)
the last are names of directories, which, when resolved
starting from a network-wide distinguished “root” di-
rectory, ‘lead to the UID of the object. Thus, an ab-
solute path name, like a UID, is valid throughout the
entire network, and denotes just one object. (There are
other forms of path name besides the absolute form;
these relative path names are mainly for convenience,
since absolute path names are potentially very long in a
large network with large numbers of objects. They are
all expressible as the concatenation of some absolute
path name preflx to the relative path name itself.)

320

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Compur~ng Research. ’ The Challenge for Creativity, 1985 March 12-14

8. Lessons

The first implementation of the DOMAIN system
was completed in March of 1981. Since then, the system
has been tested, used, and measured extensively. At
this writing, the largest operational DOMAIN network
system is a single token-ring network consisting of over
600 nodes, and DOMAIN installations of over 70 nodes
are not uncommon. h a result of this almost four
years of experience, we believe we have learned some
important practical lessons - some of which validate
(and in some cases vindicate) our choices and others
that suggest alternative implementations.

The problem with this implementation strategy for
the naming server was that the storage system (natu-
rally) provided no layer of abstraction for the notion of
directory. The SLS provided access to the raw bits of
a directory to each naming server that wanted to ma-
nipulate that directory. This was Ane as long as each
naming server in the network could operate on direc-
tories of the same format. In practice, however, the
naming servers are not the same on every node in the
network (generally due to software updates occuring at
different times) and the older naming servers are un-
able to handle constructs added to directories by newer
naming servers running on other nodes.

8.1. Choosing SLS

The DOMAIN-chosen technique mapping file sys-
tem objects into process address space and then turn-
ing h4MU faults into object read requests of the form
(UID, pageno) has been very successful. It enjoys the
benefits of simplicity of implementation, stateless re-
mote servers and the efllcency of demand-paging lazy
evaluation. Further, a single main memory cache man-
agement mechanism equally manages object pages for
local and remote objects. Our original goal for the re-
mote paging system was to have remote sequential file
system I/O take no more than two times longer than
the flle I/O from a local disk. Over the years, this ratio
has averaged around 1.8 to 1.

Directories are an important example for a system
like DOMAIN. They are permanent (stored on disk),
heavily shared by multiple nodes, and most transac-
tions on them take very little time. Also, they are likely
candidates for extensions and improvements over time.
Because we can never demand simultaneous update of
software on every node in a network, and because we
want very much to offer cross-release compatibility, we
have found ourselves constrained by our original imple-
mentation.

8.2. Seduction by SLS

The characteristics of network location trans-
parency and a low penalty for remote transparent ac-
cess combine to make the “map-it, use-it, unmap-it”
approach to object manipulation terrifically attractive.
However, we have learned that there are sometimes
compelling pratical reasons for avoiding the allure of
network transparency at the SLS level for some object
managers that want to provide a higher level of abstrac-
tion.

As if that were not enough, we have found that the
performance of the naming server tree-walk was signif-
icantly increased by asking the node that owned the
target directory do the lookup work itself, rather than
sending pages of the directory over to the requesting
node. This change demanded that the naming server
learn the difference between local and remote directo-
ries, and was an example of when “moving the work
to the data” was a win over n moving the data to the
computation.”

8.3. Use Simple Protocols

Our naming server, which implements the direc-
tory hierarchy and the name-to-UID translation, was
originally implemented completely on top of the loca-
tion transparent SLS level. As a result, it mapped and
operated on directories without regard to their location
in the network. The naming server, then, did not, in
fact could not, distinguish between directories on lo-
cal disks and those on remote disks. As a result, the
server was straightforward to implement, and as soon
as it worked on local directories, it worked on remote
directories.

The key to the attainment of our remote perfor-
mance goals has been the use of light-weight problem-
oriented protocols. We have taken full advantage of
the relatively clean environment provided by our high-
speed ring network to avoid often costly protocol sup-
ported reliability.

Operations that are idempotent (i.e. for which re-
peated applications have the same effect as a single ap-
plication) use a connectionless protocol [SWIN 79) and
retry often enough to achieve the desired level of relia-
bility. Network operations to read and write attributes
and pages are all of this form.

Operations which are not idempotent (i.e. which
have side effects), but which naturally have some state

associated with them, can often be made idempotent

321

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

using a transaction ID. Each time a client sends a new
request (not a retry) to perform an operation, it chooses
a new transaction ID. If an operation was performed
once with a particular transaction ID, the receipt of a
second request with the same W should be rejected.
File locking, for example, saves the the transaction W
of the operation which set the lock along with the lock
state.

The SLS protocols we use are inexpensive because
they are end-to-end protocols [SALT 801 and do not
rely on the communications substrate to provide any
service guarantees. Instead, each remote operation in-
dividually implements the least mechanism required by
its reliability semantics.

8.4. Obtaining High Performance

Much has been written on this subject lately for
distributed systems. (In particular, see [CHER 831 and
[LAZO 841.) The DOMAIN file system has evolved over
the years to provide as much as six times the perfor-
mance of its original implementation. Certainly in the
case of completely diskless nodes, but also very fre-
quently in the case of disked nodes, the performance-
critical information needed is elsewhere in the network,
Our performance goals coupled with our aggressive
remote-to-local ratio goal has influenced the implemen-
tation in several ways.

The disk subsystem implements fairly familiar
techniques for performance enhancement including:
physical locality optimizing, control structure caching,
batched reads, and clustered writes. Physical locality is
encouraged by the increasingly clever allocation of suc-
cessive file blocks and their Ale maps and VTOC entries.
The basic disk control structures (free-block allocation
tables and VTOC control blocks) are cached in their
own set of control block buffers. File page reads are
“batched” at the SLS-level. Recall that in DOMAIN, all
Ale read activity is caused by touching the bytes of the
file with normal CPU instructions and thereby page-
faulting on the needed page. When the SLS catches
the page-fault and determines the need for some (UID,
pageno), it may ask the lower levels for up to 31 addi-
tional successive object pages. Most disk write opera-
tions are instigated by the page purifier process, and it
tries to hand the low-levels a large collection of pages to
write so that seek-ordering and rotational-ordering can
be performed. In addition, for remote file system I/O,
DOMAIN implements trans-network batched reads: a
single read page request message may result in as many
as eight reply pages in anticipation of their need. In this

way, the ultimate client receives more of the benefit of
disk page touch-ahead.

We have ended up caching more kinds of infor-
mation than we originally expected and probably in
slightly different ways. In cases where the cost of a
disk access would have been barely acceptable, the cost
of a network message pair in addition encouraged the
use of more aggressive caching strategies.

8.5. Indefinite Postponement

In theory, the remote file server running on one
node can service requests from any number of clients.
In practice, however, a single server can be flooded
with requests from ten, twenty, even one hundred hun-
gry clients. Because the communications protocol layer
provides no delivery guarantees to the higher layers, it
blithely discards messages it receives after its assorted
queues and buffers All up. In theory, the issuer of the
discarded message will send a time-out based retry and
all will be well. In practice, indefinite postponement is
a definite possibility. As networks get larger, and in
particular as server nodes get busier, a solution that
formally addresses this problem completely is needed
(rather than an ad hoc approach that, for example, in-
creases the depth of the queues periodically).

8.6. Conclusion

The essential ingredients to good performance of
a distributed Ale system include all those things re-
quired for a good centralized Ale system: caching, bulk
data transfer from the disk, and good object locality
on the disk. In addition, the distributed file system
needs more: it needs caching of remote data to avoid
as many remote operations as possible; cheap, fast pro-
tocols; and bulk data transfer over the network, even
when the protocols are very cheap.

REFERENCES

[APOL 811 Apollo Computer, Inc.

[BIRR 821

IBIRR 841

Apollo DOMAIN Architecture, Apollo Com-
puter Inc., Chelmsford, Mass., 1981.

Birrel, A, D., Levin, R., Needham, R. M.,
Schroeder, M. D.
“Grapevine: An Exercise in Distributed Com-
puting,” Communications of the ACM, 25, 4
(April 1982). pp. 260-274.

Birrel, A. D., Nelson, B. J.

322

Proceedii of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

“Implementing Remote Procedure Calls”, ACrM Mesa,” Communications of the ACM, 23, 2
Transactions on Computer Systems, 2, 1 (Febru- (February 1980), pp. 105-113.
ary 1984), pp. 39-59. [LAZO 811 Lazowska, E., Levy, H., Almes, G., Fischer, M.,

[CHER 831 Cheriton, D. R., Zwaenepoel, W. Fowler, R., Vestal, S.
“The Distributed V Kernel and its Performance “The Architecture of the Eden System,” pro-
for Diskless Workstations,” Proceedings of the ceedings of the Eighth Symposium on Operating
Ninth Symposium on Operating Systems Princi- Systems Principles, December 1981, pp. 148-
ples,October 1983,~~. 128-139. 159.

[DEC 791 Digital Equipment Corporation. [LAZO 841 Lazowska, E. D., Zahorjan, J., Cheriton, D. R.,
VAX 11/780 Hardware Handbook, Digital Zwaenepoel, W.
Equipment Corporation, Maynard, MA, 1979. “File Access Performance of Diskless Work-

[FREN 781 French, R. E., Collins, R. W., Loen, L. W. stations”, Technical Report 84-06-01, Depart-

*System/38 Machine Storage Management,” IBM ment of Computer Science, University of Wash-

System/38 Technical Developments, IBM Gen- ington, Seattle, WA, June 1984.

era1 Systems Division, pp. 63-66, 1978. [LEAC 821 Leach, P. J., Stumpf, B. L., Hamilton, J. A.,
[GIFF 791 Gifford, D. K. Levine, P. H.

“Weighted Voting for Replicated Data,” Pro- “UIDs as Internal names in a Distributed File

ceedings of the Seventh Symposium on Operat- System,” Proceedings of the 1st Symposium on

ing Systems Principles, December 1979, pp. 150- Principles of Distributed Computing, Ottawa,
159. Canada, Aug. 1982.

[CORD 791 Gordon, R. L., Farr, W., Levine, P. H.
“Ringnet: A Packet Switched Local Network
with Decentralized Control,” Computer Net-
works, 3, North Holland, 1980, pp. 373-379.

[HOAR 741 Hoare, C. A. R.
“Monitors: an Operating System Structuring
Concept,” Communications of the ACM, 17, 10
(October 1974). pp. 549-557.

[LEAC 831 Leach, P. J., Levine, P. H., Douros, B. P.,
Hamilton, J. A., Nelson, D. L., Stumpf, B. L.
“The Architecture of an Integrated Local Net-
work,” lEEE Journal on Selected Areas in Com-
munication, SAC-l, 5 (November 1983), pp.
842-857.

[LISK 791 Liskov, B. H.
“Primitives for Distributed Computing,” Pro-

[HOUD 781 Houdek, M. E., Mitchell, G. R. ceedings of the Seventh Symposium on Operat-

“Translating a Large Virtual Address,” IBM Sys- ing Systems Principles, December 1979, pp. 33-

tern/38 Technical Developments, IBM General 42.

Systems Division, pp. 22-24, 1978. [MCKU 841 McKusick, M. K., Joy, W. N., Leflier, S. J.,

[IBM 761 International Business Machines Corporation
IBM System/370 Principles of Operation,
GA22-7000-5, IBM, 1976

[JANS 761 Janson, P. A.
“Using Type Extension to Organize Vir-
tual Memory Mechanisms,‘* Technical Re-
port LCS/TR-167, Laboratory for Computer
Science, M.I.T., Cambridge, Mass., September,
1976.

Fabry, R. S.
“A Fast File System for UNIX,” ACM Transac-
tions on Computer Systems, 2, 3 (August 1984),

pp. 181-197.

[NEED 791 Needham, R. M.
“Systems Aspects of the Cambridge Ring,” Pro-
ceedings of the Seventh Symposium on Operat-
ing Systems Principles, December 1979, pp. 8%
85.

[KOHL 811 Kohler, W. H. [NELs 811 Nelson, D. L.
“A Survey of Techniques for Synchronization “Role of Local Network in the Apollo Computer
and Recovery in Decentralized Computer Sys- System,” Newsletter of IEEE Tech. Comm. on
terns,” Computing Surveys, 13, 2 (June 1981), Distributed Processing, 1, 2 (December 1981),
pp. 149-184. pp. 10-13.

[LAMP SO] Lampson, B. W., and Redell, D. D. [NELS 831 Nelson, D. L.
“Experience with Processes and Monitors in “Distributed Processing in the Apollo DOMAIN,”

323

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity. 1985 March 12-14

The CAD Revolution, Second Chautauqua on File Server,” Operating Systems Review, 14, 3
Productivity in Engineering and Design, (spon- (July 1980), pp. 55-69.
sored by Schaeffer Analysis, Inc., Mont Vernon,
New Hampshire). Klawah Island, South Car-

(SWIN 791 Swinehart, D., McDaniel, G., Boggs, D.

olina, November 1983, pp 45-51.
“WFS: A Simple Shared File System for a Dis-
tributed Environment,” Proceedings of the Sev-

[NELS 841 Nelson, D. L., Leach, P. J. enth Symposium on Operating Systems Princi-

“The Architecture and Applications of the Apollo pies, December 1979, pp. 9-17.

DOMAIN,” IEEE Computer Graphics and Ap- ITHOM 781 Thompson, K.
plications, 4, 2 (April 1984), pp. 58-66. “UNIX Implementation,” Bell System Technical

[ORGA 721 Organick, E. I. Journal, 57, 6 (July-August 1978), pp. 1931-

The Multics System: An Examination of 1946.

Its Structure M.I.T. Press, 1972. [WILK 791 Wilkes, M. V., and Wheeler, D. J.

[POPE 811 Popek, G., Walker, B., Chow, J., Edwards, D., “The Cambridge Digital Communication Ring,”

Kline, C., Rudlsin, G., Thiel, G. Proceedings of the Local Area Communications

“LOCUS: A Network Transparent, High Relia- Network Symposium, May, 1979, pp. 47-61.

bility Distributed System,” Proceedings of the
Eighth Symposium on Operating Systems Prin-
CipJes, December 1981, pp. 169-177.

[REDE 801 Redell, D. D., Dalal, Y. K., Horsley, T. R.,
Lauer, H. C., Lynch, W. C., McJones, P. R.,
Murray, H. G., Purcell, S. C.
“Pilot: an Operating System for a Personal
Computer,” Communications of the ACM, 23,
2 (February 1980), pp. 81-91.

[RITC 741 Ritchie, D. M., Thompson, K.
“The UNIX time-sharing system,” Communica-
tionsof theACM, 17, 7 (July 1974), pp. 365-375.

[SALT 791 Saltzer, J.H., Pogran, K.T.
“A Star-Shaped Ring Network with High Main-
tainability,” Proceedings of the Local Area Com-
munications Network Symposium, Mitre Corp,
May 1979, pp. 179-190.

[SALT 801 Saltzer, J. H., Reed, D. P., Clark, D. D.
“End-to-End Arguments in System Design,”
Notes from LEEE Workshop on Fundamental Is-
sues in Distributed Systems, Pala Mesa, Ca., De-
cember 15-17, 1980.

[SALT 811 Saltzer, J. H., Clark, D. D., Pogran, K. T.
“Why a Ring,” Proceeding Seventh Data Com-
munications Symposium, October 27-29, 1981,
pp. 211-217.

[SPEC 821 Spector, A. Z.
“Performing Remote Operations Eillciently On a
Local Network,” Communications of the ACM,
25, 4 (April 1982), pp. 246-260.

[STUR SO] Sturgis, H., Mitchell, J., Israel, J.
“Issues in the Design and Use of a Distributed

323

