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Abstract 

The distributed file system component of 
the DOMAIN system is described. The DO- 
MAIN system is an architecture for networks 
of personal workstations and servers which cre- 
ates an integrated distributed computing envi- 
ronment. The distinctive features of the file sys- 
tem include: objects addressed by unique iden- 
tifiers (UIDs); transparent access to objects, re- 
gardless of their location in the network; the 
abstraction of a single level store for accessing 
all objects; and the layering of a network wide 
hierarchical name space on top of the UID based 
flat name space. The design of the facilities is 
described, with emphasis on techniques used to 
achieve performance for access to objects over 
the network. 

1. Introduction 

This paper describes the design of the distributed 
file system for the Apollo DOMAIN operating system. 
DOMAIN is an integrated local network of powerful 
personal workstations and server computers ([APOL 
811, [NELS 811); both of which are called nodes. A 
DOMAIN system is intended to provide a substrate on 
which to build and execute complex professional, engi- 
neering and scientific applications ([NELS 831). Other 
systems built following the integrated model of dis- 
tributed computing include EDEN [LAZO 811 and LO- 
CUS [POPE 811. 
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Within the DOMAIN system, the network and the 
distributed Ale system contribute to this goal by al- 
lowing the professional to share programs, data, and 
expensive peripherals, and to cooperate via electronic 
mail, with colleagues in much the same manner as on 
larger shared machines, but without the attendant dis- 
advantage of sharing processing power. Cooperation 
and sharing are facilitated by being able to name and 
access all objects in the same way regardless of their 
location in the network. 

Thus, when we say that DOMAIN is an integrated 
local network, we mean that all users and applications 
programs have the same view of the system, so that 
they see it as a single integrated whole, not a collec- 
tion of individual nodes. However, we do not sacrifice 
the autonomy of personal workstations to achieve in- 
tegration: each personal workstation is able to stand 
alone, but the system provides mechanisms which the 
user can select that permit a high degree of cooperation 
and sharing when so desired. 

Another reason we say that DOMAJN is an inte- 
grated local network is that each machine runs a com- 
plete (but highly configurable) set of standard software, 
which (potentially) provides it with all the facilities it 
normally needs - Ale storage, name resolution, and so 
forth. In contrast are server-based distributed systems, 
wherein network wide services are provided by desig- 
nated machines (“servers”) which run special purpose 
software tailored to providing some single service or 
smal1 number of services (e.g. Grapevine [BIRR 821, 
WFS [SWIN 791, and DFS [STUR SO]). DOMAIN has 
server nodes; however, they are created by configur- 
ing the standard hardware and software for a special 
purpose - a “Ale server” node, say, is created using a 
machine with several large disks and system software 
configured with the appropriate device drivers. 

1.1. Organization 

The rest of this paper is organized as follows. The 
remainder of this introduction briefly descibes the hard- 
ware environment on which the system runs. Section 
2 provides an overview of the Ale system, and breaks 
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it into four major component groups. Section 3 gives a 
block diagram of the Ale system structure, and a brief 
description of each module, locating it within one of the 
component groups. Sections 4, 5, 6, and 7 each describe 
one of these component groups. Finally, section 8 fo- 
cuses on those aspects of the design which we believe 
have contributed most to the efilciency of the system. 

1.2. Hardware Environment 

A DOMAIN system consists of a collection of 
powerful personal workstations and server computers 
(generically, nodes) interconnected by a high speed lo- 
cal network. 

1.2.1. User Interface 

Users interact with their personal nodes via a dis- 
play subsubsystem, which includes a high resolution 
raster graphics display, a keyboard and a locating de- 
vice (mouse, touch pad, OF tablet). A typical display 
has 800 by 1024 pixels, and bit BLT (bit block trans- 
fer) hardware to move arbitrary rectangular areas at 
high speed. Server nodes have no display, and are con- 
trolled over the network. More information on the user 
environment can be found in [NELS 841. 

1.2.2. CPU 

There are several models of both personal and sever 
nodes. Their ‘tick’ times [LAMP 801 range from .4 
to 1.25 microseconds; their maximum main memory 
ranges from 3.5 megabytes to 8 megabytes. Most per- 
sonal nodes have 33 to 154 megabytes of disk storage 
and a 1 megabyte floppy disk, but no disk storage is 
required for a node to operate. Server nodes configured 
as file servers can have 300-1000 megabytes or more 
of disk storage; those configured as peripheral servers 
can have printers, magnetic tape drives, plotters, and 
so forth. 

All nodes have dynamic address translation (DAT) 
hardware which supports up to 128 processes, with 
each process able to to address 16 or 256 megabytes 
of demand paged virtual memory (depending on CPU 
model). The DAT hardware on some models uses a re- 
verse mapping scheme, similar to that used in the IBM 
System/38 [HOUD 781; it is a large, hardware hash 
table keyed by virtual address, with the physical ad- 
dress given by the hash table slot number in which a 
translation entry is stored. Other models use a forward 
mapping scheme, similar to the VAX [DEC 79j or Sys- 
tem/370 [IBM 761. The DAT also maintains used and 

modifled statistics on a per page basis for the use of page 
replacement software, and access protection controlling 
read, write and execute access. The differences between 
the DATs of the different models are abstracted away 
by an &&iu (memory management unit) module. 

1.2.3. Network 

The network is a 12 megabit per second baseband 
token passing ring (other ring implementations are de- 
scribed in [WILK 791, [GORD 791; and reasons for pre- 
ferring a ring network in [SALT 791. [SALT 811). Each 
node’s ring controller provides the node with a unique 
node ID, which is assigned at the factory and contained 
in the controller’s microcode PROMS. The maximum 
packet size is 2048 bytes. The controller has a broad- 
cast capability. 

We will not discuss the network further here; for 
purposes of the Ale system, all that is required is that 
the it deliver messages with high probability and low 
CPU overhead. For more information on the ring con- 
troller and data link layer protocols see [LEAC 831. 

2. File System Overview 

The DOMAIN fiIe system is actually made of four 
distinct components: an object storage system (OSS), 
the single level store (SLS), the lock manager, and the 
naming server. (See figure 1 for a block diagram.) 

The OSS provides a flat space of objects (storage 
containers) addressed by unique identiilers (UIDs). Ob- 
jects are typed, protected, abstract information con- 
tainers: associated with each object is the UID of a 
type descriptor, the UID of an access control list (ACL) 
object, a disk storage descriptor, and some other at- 
tributes: length; date time created, used and modi- 
Aed; reference count; and so forth. Object types in- 
clude: alphanumeric text, record structured data, IPC 
mailboxes, DBMS objects, executable modules, directo- 
ries, access control lists, serial I/O ports, magnetic tape 
drives, and display bit maps. (Other objects which are 
not information containers also exist. UIDs are used 
to identify processes; and to identify persons, projects, 
organizations, and protected subsystems for authenti- 
cation and protection purposes.) The distributed OSS 
makes the objects on each node accessible throughout 
the network (if the objects’ owners so choose by setting 
the objects’ ACLs appropriately). The operations pro- 
vided by the OSS on storage objects include: creating, 
deleting, extending, and truneating an object; reading 
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or writing a page of an object; getting and setting at- 
tributes of an object such as the ACL UID, type UID, 
and length: and locating the home node of an object. 
The OSS automatically uses a node’s main memory as a 
cache of recently used pages, attributes, and locations 
of objects, including remote ones. It does nothing to 
guarantee cache consistency between nodes; however, 
it does provide mechanisms that the lock manager can 
use to make and enforce such guarantees. 

A unique aspect of the DOMAIN system is its net- 
work wide single level store (SLS). (Multics [ORGA 721 
and the IBM System/38 [FREN 781 are examples of a 
single level store for centralized systems.) Programs ac- 
cess all objects by presenting their UIDs and asking for 
them to be n mapped” into the program’s address space 
(see [REDE SO] on the desirability of mapping in dis- 
tributed systems); subsequently, they are accessed with 
ordinary machine instructions, utilizing virtual memory 
demand paging. 

The purpose of the single level store is not to create 
network wide shared memory semantics akin to those 
of a closely coupled multiprocessor; instead, it is a form 
of lazy evaluation: only required portions of objects are 
actually retrieved from disk or over the network. An- 
other purpose ls to provide a uniform, network trans- 
parent way to access objects: the mapping operation 
is independent of whether the UID is for a remote or 
local object. As long as programs make the worst case 
assumption that their objects are not local, and hence 
that operations on them are subject to communication 
failures, they need not be aware of their location. (See 
[POPE 811 on the desirability of network transparency.) 

The lock manager serializes multiple simultaneous 
access to objects by many processes, including ones on 
different nodes. A process must lock an object prior 
to its use; the lock manager arbitrates lock requests, 
and uses the sequence of requests to keep main memory 
caches consistent. 

The naming server allows objects to be referred to 
by text string names. It manages a collectioti of di- 
rectory objects which implements a hierarchical name 
space much like that of Multics or UNW [RITC 741. 
The result is a uniform, network wide name space, in 
which objects have a unique canonical text string name 
as well as a UID. The name space supports convenient 
sharing, which would be severely hampered without 
the ability to uniformly name the objects to be shared 
among the sharing parties. 

‘UNIX Is a trademark of Bell Laboratories. 

3. File System Structure 

Figure 1 shows a block diagram of the iile sys- 
tem. Each of the major component groups is indicated 
by a different form of shading. The arrows between 
blocks indicate call dependencies; in addition, all mod- 
ules above the “pageable” boundary have an implicit 
dependency on the SLS. 

The system is stuctured using a data abstraction 
approach, sometimes called a “type manager” approach 
when applied to operating systems ([JANS 761). Each 
module has a set of operations and a private database 
in which to record its state. Thus, in describing the 
components of the system, we will identify the man- 
agers which comprise that component, and then, for 
for each manager, the essential operations provided by 
that manager, and an indication of the form of the 
database and algorithms used to implement the opera- 
tions. (Note: in the descriptions of calls in this paper, 
irrelevant details have often been suppressed for ease of 
exposition; the intent is to capture the semantic flavor 
of the interfaces, not their precise syntax.) 

4. Object Storage System 

The OSS is the DOMAIN counterpart of dls- 
tributed Ale systems such as WFS [SWIN 791 and DFS 
[STUR 801. The purpose of the OSS is to provide per- 
manent storage for objects, and to allow objects to be 
identifled by and operated on using UIDs, independent 
of their location in the network. 

At the level we will discuss here, an object is just a 
data container: an array of uninterpreted data bytes, or 
more precisely, an array of pages (1024 byte units into 
which objects are divided}. Other object attributes, 
s.uch as it’s type descriptor and access control list are 
not used by the OSS, but are simply stored for the 
use of higher levels. (Not all objects are represented by 
storage containers: for example, processes are identifled 
by UIDS, but are not associated with any permanent 
storage.) 

The OSS consists of several component subgroups: 
a local OS’S, remote OSS, cached OSS, and an object lo- 
cating service. The top-level location independent OSS 
abstraction is created utilizing these services. 

4.1, Identifying Objects 

UIDs of objects are bit strings (64 bits long); they 
are made unique by concatenating the unique ID of the 
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node generating the UID and a time stamp from the 
node’s timer. (The system does not use a global clock.) 
UlDs are also Jocation independent: the node lD in an 
object’s ULD can not be considered as anything more 
than a hint about the current location of the object. 
(More detail on the use and implementation of UIDs is 
presented in [LEAC 821.) 

At any point in time, the permanent storage for an 
object resides entirely at only one node; also, the system 
never attempts to transparently move it to a different 
node. So, for every object there is always one distin- 
guished node which is its “home”, and which serves as 
the locus of operations on the object. Above the OSS 
level, only UIDs are used to address objects: an opera- 
tion whose UID addresses a remote object is sent to the 
object’s home node to be performed. 

4.2. Local OSS 

This subgroup provides access to local objects: i.e., 
those objects stored on disk volumes which are attached 
to the node accessing them. It provides operations to 
create and delete local objects, and to access the at- 
tributes and contents (pages) of existing objects (see 
figure 2). There are two managers in this group: the 
VTOC (volume table of contents) and the BAT (block 
allot ation table). 

The VTOC for a volume contains an entry for 
each object on the volume; an object’s VTOC entry 
contains the object’s attributes and the root of its file 
map, which translates page numbers within an object to 
disk block addresses. (VTOC entries are very similar to 
UNIX inodes ITHOM 781.) The VTOC is organized as 
an associative lookup table keyed by object UID, which 
permits rapid location of an object’s VTOC entry given 
its UID. (Using a large direct mapped hash table with 
chained overflow buckets and avoiding high utilization, 
the average lookup time is just over one disk access.) 

To access the contents of an object requires two 
steps: translate the object reference to disk block ad- 
dress, then read (or write) the disk block. (An object 
reference is a pair consisting of the object’s UID and 
a page number within the object.) The VTOC only 
provides operations to do the translation, not the reads 
or writes, because the translations are then cached and 
used by the cached OSS (see below). The translation 
is done by reading or writing the flle map for 32 page 
units of the file called segments. 

The BAT for a volume keeps track of which disk 
blocks are available for allocation on that volume. The 
principle operations on the BAT are ones to allocate 

allocate - allocate a VTOC entry for an empty object and 
set its attributes 

The object is created on the local disk vol- 
ume specified by ‘vol-ind’ex’. The object de- 
scriptor contains the object’s UID and initial 
attributes. 

FUNCTION allocate(vol-index, obj-decriptor): vtoc-index 

look up - get the VTOC index of an object 
FUNCTION lookup(vol-index, obj-uid): vtoc-index 

read - get the VTOC entry of an object given its VTOC 
index 

Attributes in the ‘vtoc-entry’ include: object 
UID; type UID; ACL UID; length; time cre- 
ated, used, and modified; reference count, etc. 

FUNCTION read(vol-index, vtoe-index): vtoc-entry 

write - write the VTOC entry of an object given its VTOC 
index 

Note: overwriting a VTOC entry for an object 
with an empty VTOC entry has the effect of 
deleting the object. 

FUNCTION write(vol-index, vtoc-index, vtoc-entry) 

read-im - get the file map ior a segment of an object 

Object are divided intb 32 page segments; the 
‘seg-no’ indentifies the segment; the ‘file-map’ 
is an array of 32 disk block addresses, one for 
each page in the segment. 

FUNCTION read-fm(vol-index, vtoc-index, seg-no): file-map 

write-fm - write the file map for a segment of an object 
FUNCTION write-fm(vol-index, vtoc-index, seg-no, file-map) 

Figure 2: Sample VTOC Operations 
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and free disk blocks. One interesting feature is that 
the allocation operation aids in creating locality of the 
pages within an object on the disk. One of the input 
parameters of the allocation operation is a disk block 
address; an attempt is made to make the newly allo- 
cated block as close as possible to it. When a new page 
is being added to an object, this parameter is usually 
set to the disk address of the previous logical page of 

that object. We observe that this causes much better 
clustering of objects on the disk than not doing any- 
thing at all, except when the disk is nearly full. (We 
have not analyzed the benefit quantitatively. Also, to 
get really good locality, St is probably necessary to use 
the more comprehensive methods of [MCKU 841.) 

4.3. Cached OSS 

Disk operations and remote operations are both 
expensive, so it is desirable to avoid them when possible. 
One means of doing so is to cache recently obtained 
results of such operations, and reuse them when it can 
be ascertained that they are still valid. 

The cached OSS consists of the AST, PMAP, and 
MIHAP managers. The AST (active segment table) 
caches locations, pages, and attributes of active (re- 
cently used) objects, whether local or remote. Each 
entry in the AST contains the UID, location and at- 
tributes of an object, plus the PMAP for one segment 
of the object. The PMAP (page map) for a segment con- 
tains the Ale map for that segment, plus references to all 
resident main memory pages. Part of the maintenance 
of PMAPs ls done by the purifier process, which period- 
ically writes back modified pages to secondary storage 
(local or remote, as need be). The w (memory 
map) is the allocator of main memory pages, and keeps 
track of their contents. 

The AST provides operations to access pages and 
attributes (including locations) of objects (see flgure 3). 
If the requested information is not in its cache (or 
PMAP’s), then it uses the local or remote OSS to get 
the necessary information and encache it. The touch 
operation fetches object contents (pages). (There is no 
write operation; pages are modified via the single level 
store while in the cache, then written back later by the 
PMAP purifier process.) The get-attr operation fetches 
object attributes, and set-attr allows objects’ attributes 
to be individually changed. 

The AST also provides operations to manage its 
cache’s consistency with that of other nodes, and which 
are designed to be used by the lock manager: it only 
allows access to objects if they are properly locked; it 
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touch - cause several consecutive pages of an object to be 
cached in main memory 

Cause ‘n’ pages pages starting with ‘page- 
num’ of object with UID ‘object-uid’ to be 
cached. The object ‘location’ is the ID of the 
remote node or local volume where the object 
resides. 

FUNCTION touch(location, object-uid, page-num, n): phys- 
page-list 

get-at& - get an object’s attributes 

Attributes in the ‘attr-ret’ include: type UID; 
ACL UID; length; time created, used, and 
modified; reference count, etc. 

FUNCTION get-attr(object-uid): attr-ret 

set-attr-X - set attribute X of an object 

This is a set of operations, where X can be 
replaced by any of the attributes above. 

PROCEDURE set-attr-X(object-uid, X-value) 

cond-flush - remove stale pages of an object from the cache 

The boolean ‘hushed is true if any stale data 
was flushed. 

FUNCTION cond-flush(object-uid, dtm): flushed 

purify - send all modified pages of an object back to its 
‘home’ node 

if ‘force’ is true, write the pages to disk imme- 
diately at the home node, else just leave them 
in the home node’s cache. 

PROCEDURE purify(object-uid, force) 

Figure 3: Sample AST Operations 
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maintains a version number for each object; and it pro- 
vide operations to control the contents of the cache. 

4.3.1. Lock Enforcement 

As one of its attributes, each Ale system object has 
a lock key. The lock key is set to either a network node 
ID or one of (for now) two special values: readbyall 
and writebyall. When an object’s lock key is set to N, 
only OSS requests from node N are processed. All other 
requests are denied with an error indication of concur- 
rency violation. When the lock key is set to readbyall, 
read requests (for pages and attributes) from every node 
are allowed while all write requests are denied regardless 
of their source. Finally, a lock key value of writebyall 
completely disables the OSS level concurrency control 
checking and so all requests are always fulfilled. 

4.3.2. Object Versions 

A time stamp based version number scheme is used 
to support the cache validation mechanism. An object’s 
version number is its date-time modified (DTM) at- 
tribute. (See [KOHL 811 for a survey of distributed con- 
currency techniques.) Every object has a DTM with 8 
millisecond resolution associated with it, which records 
the time the object was last modifled. 

The DTM of an object is maintained at its home 
node. When an object is modified by locally originating 
memory writes, the page modifled bits in the DAT hard- 
ware record that fact; periodically, the modifled bits are 
scanned and cause the object’s DTM to be updated. If 
an object is modified by a remote node, eventually the 
object’s modified pages are sent back to the home node; 
the paging server updates an object’s DTM in response 
to remotely originating OSS requests to write its pages. 

In addition, every node also remembers the DTM 
for all remote objects whose pages it has encached in its 
main memory. Every time a page of an object is read 
from or written back to its home node, the latest DTM 
is sent with the network reply message. Recall that the 
requests for page level operations are filtered through 
the lock key based low-l&e1 concurrency control. 

4.3.3. Content Control 

There are s?Treral operations explicitly provided by 
the AST to allow for csche management by higher level 
synchronization mechanisms. 

1. A conditional flush operation expunges from the 
cache all pages of an object that are not from 

create - create an object 

the new object is created on the same node as 
‘lot-object-uid’ 

FUNCTION create(loc-object-uid): new-object-uid 

delete - delete an object 
PROCEDURE delete(object-uid) 

locate - return the node address of the home node of an 
object 
FUNCTION locate(object-uid): node-id 

Figure 4: Sample FILE Operations 

2. 

3. 

4. 

the current version of the object. (This is used 
by the lock manager when it discovers that the 
DTM associated with the cached pages of an ob- 
ject is different from the object’s real DTM.) 

A get-at& operation returns (among other at- 
tributes) the DTM of the current version of an 
object. 

A purification operation sends copies of all mod- 
ified pages of an object back to the home node 
of the object (but leaves the pages encached for 
possible later use). (This is used by the lock 
manager at unlock time.) 

A force write variant of the purification opera- 
tion causes a page to be written to permanent 
store on its home node: its purpose is to be a 
minimally sufficient toe hold with which to im- 
plement more complex atomic operations. 

We shall see that using by using the AST’s lock en- 
forcement, object version, and cache content control fa- 
cilites, the lock manager can effectively guarantee cache 
consistency for all clients who obey the system locking 
rules (see section 6). 

4.4. Location Independent OSS 

Location independent access to objects is provided 
by the SLS and the location independent OSS. The SLS 
provides access to the contents of already existing ob- 
jects, while the location independent OSS provides ac- 
cess to object attributes, and supports object creation 
and deletion. 

315 



Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14 

The location independent 0% consists of the FILE 
manager, and the HINT manager. The FILE manager 
exports the attribute access and cache control opera- 
tions of the AST to user programs in a location in- 
dependent way. In addition, it implements a create 
operation to create new objects, a delete operation to 
destroy them, and a locate operation to return the node 
ID of the home node of an object (see figure 4). To cre- 
ate location independence, the FILE manager uses the 
HINT manager to determine the location of an object, 
then either does the operation locally (using the local 
or cached OSS), or uses the services of REMFILE (see 
below) if it must go remote. 

The HINT manager is the backbone of the locat- 
ing service: given an object’s UID, it Ands the ID of the 
node on which an object resides. This is the fundamen- 
tal distributed algorithm in the system: no global state 
information is kept about object locations. Instead, a 
heuristic search is used to locate an object. Complete 
details are in [LEAC 821, including design considera- 
tions and the evolutionary history of the algorithm. To 
summarize briefly, the current algorithm relies heavily 
on hints about object location. One source is the node 
ID in the object’s UID, another is the hint file. Any time 
a software component can make a good guess about the 
location of an object, it can store that guess in the hint 
Ale for later use; one particularly good source of hints 
is the naming server, which guesses that objects are 
co-located with the directory in which they are cata- 
logued. If all hints fail to locate the object, then the 
requesting node’s local disk is searched for the object. 
The algorithm works because, although it is possible 
for objects to do so, they rarely move from the node 
where they were created; and if they do, then the nam- 
ing servers hint will nearly always be correct. A last 
resort, which would be completely sufficient, would be 
to accept user input into the hint file: this has not yet 
been implemented, as it hasn’t really been needed. 

4.5. Remote OSS 

The remote OSS is separated into two parts which 
are at two very different layers of the system: the NET- 
WORK manager, which provides remote access to the 
attributes and contents of already existing objects; and 
the REMFILE manager, which provides facilities to re- 
motely create and delete objects. This is in contrast to 
the local OSS, where one set of managers provides both 
capabilities; the purpose is to separate the pieces of the 
remote OSS which are needed to resolve page faults 
from those which are not. This both minimizes the 

amount of code and data which must be permanently 
resident in main memory in order to implement vir- 
tual memory, and allows the REMFILE manager to use 
the virtual memory provided by the SLS. Both NET- 
WORK and REMFILE are location dependent abstrac- 
tions: in order to access a remote object, its location 
must already be known. Both of these managers can 
be thought of as hand-coded stubs for a simple form of 
remote procedure call (RPC) [BIRR 841. 

The NETWORK manager is divided into a client 
side and a server side. The client side is used by 
the cached OSS to access the attributes and contents 
(pages) of already existing remote objects that are not 
in the main memory cache. When the client side is 
called to make a remote access, it is given the request 
parameters and the node ID of the home node of the 
object being accessed. (The request parameters always 
include the UID of an object, and, for a read page re- . 
quest, would include the page number of the object to 
read, for example). It packages the request parame- 
ters into a message, sends it to the given node using the 
low-level socket datagram IPC and waits for a response. 
Since the requests are all idempotent, it can use a very 
simple request-response protocol ([SPEC 821); for more 
details on sockets and protocols see [LEAC 831. 

The server side uses a remote paging server pro- 
cess to handle client requests, which services all re- 
motely originating requests to read or write pages and 
attributes of objects on that node. The paging server 
has a socket assigned to it, with a well known ID, upon 
which it receive requests; it uses the local access mech- 
anism to fulfill those requests. Remote paging oper- 
ations are requested via (UID, page number) pairs 
only, never by disk address, and other remote opera- 
tions only via UIDs; thus, a node never depends on any 
other node for the integrity of its object store. (This 
is one of the reasons the system is truly a collection of 
autonomous nodes - to which are added mechanisms 
permitting a high degree of cooperation - as distin- 
guished from, say, a locally dispersed loosely coupled 
multiprocessing system.) 

The REMFILE manager is also divided into client 
and server sides, and except that the operations are to 
create and delete objects, its structure is nearly identi- 
cal to the NETWORK manager. The server side uses 
a remote file server process; it services client requests 
by calling the FILE manager to service requests. REM- 
FILE also handles remote lock requests for the LOCK 
manager; see section 6. 
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5. Single Level Store 

The single level store concept means that all mem- 
ory references are logically references directly to ob- 
jects. This is in contrast to a multi-level store, which 
typically has a “primary” store and one (or more) “sec- 
ondary” store(s): only the primary store is directly ac- 
cessible by programs, so they have to do explicit “I/O” 
operations to copy an object’s from secondary to pri- 
mary store before the data can be accessed. To make 
the distinction between primary and secondary store 
transparent, a single level store has to manage main 
memory as a cache over the object store: fetching ob- 
jects (or portions of objects) from permanent store into 
main memory as needed, and eventually writing back 
modified objects (or portions thereof) to the permanent 
store. SLS is thus a form of virtual memory, since all 
referenced information need not (indeed could not) be 
in main memory at any one time. 

Our implementation of SLS has many aspects in 
common with implementations of SLS for a centralized 
system: main memory is divided into page frames; each 
page frame holds one object page; main memory is man- 
aged as a write-back cache; DAT hardware allows refer- 
ences to encached pages at main memory speeds, If an 
instruction references a page of an object which is not in 
main memory, the DAT hardware causes a page fault, 
and supplies the faulting virtual address and the ID of 
the faulting process to software. The page fault han- 
dler finds a frame for the page; reads the page into the 
frame; updates the DAT related information to show 
that the page is main memory resident; and restarts or 
continues the instruction. 

The SLS is implemented by the MST manager, 
which comes in two modules: one which is permanently 
resident, called MST-wired; and one which is pageable, 
called MST-unwired. Both manipulate a per process 
table, the Mapped Segment Table (MST), which trans- 
lates a virtual address to a (UID, page number) pair. 

MST-unwired implements a map operation, which 
adds an object to the address space of a process given 
the object’s UID; an unmap operation, which removes 
an object; a get-uid operation to inquire about the ob- 
jects in an address space; and a set-touch-ahead-cnt 
operation to cause read-ahead on page faults. To map 
an object into the address space, an entry deflning the 
(virtual address, UID) association is made in the 
MST; unmapping just removes the appropriate entry. 
None of these operations are required while servicing a 
page fault; thus, the module can be pageable. 

MST-wired implements a touch operation, which 
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map - make an object accessible through a virtual address 
space range 
FUNCTION map(object-uid, protection, grow-ok, out obj- 
length): virt-addr 

unmap - remove an object from the address space 
PROCEDURE unmap(virt-addr) 

getuid - get the UID of a mapped object 

FUNCTION getuid(virt-addr): object-uid 

set-touch-ahead-cnt - set demand paging cluster factor for 
a mapped object 

Causes pages of the object to be read/written 
in ‘cluster-size’ units. 

PROCEDURE set-touch-ahead-cnt(virt-addr, cluster-size) 

touch - cause a page to be cached in main memory 

The page refered to by virtual address ‘virt- 
addr’ is brought into memory, and the MMU is 
loaded with the ‘virt-addr’ <-> ‘phys-page- 
addr’ association. 

PROCEDURE touch(virt-addr): phys-page-addr 

wire - cause a page to be cached in main memory and made 
non-pageable 
PROCEDURE wire(virt,-addr): phys-page-addr 

find - find the phyical page address for a virtual address 

Optionally wire the page if ‘wire-flag’ is true. 

PROCEDURE find(virt-addr,wire-flag): phys-page-addr 

Figure 5: Sample MST Operations 
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for a given virtual address, causes the object page asso- 
ciated with it to be cached in main memory. The touch 
operation is given the virtual address of the faulting 
page, which it looks up in the MST to get the UID of 
the object mapped at that address; fetching the page 
is then just a request to the OSS, even if the page be- 
longs to a remote object {see figure 5). If the touch 
ahead count is more than one, it will also pre-fetch suc- 
ceeding pages of the object. Other operations include 
a wire operation, which is similar to touch, except that 
the page is made permanently resident as well; and a 
find operation, which returns the main memory address 
of a page if it is resident. 

What distinguishes our implementation from a cen- 
tralized one is the necessity of dealing with multiple 
main memory caches: in fact, one for each node in the 
network. This leads to the problem of synchronizing 
the caches in some way: of flnding and fetching the 
most up-to-date copy of an object’s page on a page 
fault, and of avoiding the use of “stale” pages (ones 
that are still in a node’s cache, but have been more 
recently modifled by another node). The objective of 
synchronization is to give programs a consistent view 
of the current version of an object in the face of (po- 
tentially) many updaters. A second objective is that 
the synchronization algorithm should be quite simple 
and need only a small data base, as it would be part 
of the SLS implementation and hence be permanently 
resident in main memory. 

These objectives appeared, for practical purposes, 
to be mutually exclusive, so our SLS implementation 
does not guarantee consistency or the use of the cur- 
rent version. Instead, the implementation does provide 
operations and information from which a higher level 
can build a mechanism that makes the stronger guar- 
antees. In addition, the higher level can use the virtual 
memory provided by SLS, and thereby be in large mea- 
sure freed of the constraints mentioned earlier on the 
size of it and its data base. The system provides a 
readers/writers locking mechanism at the higher level: 
however, other clients are free to construct their own 
synchronization mechanism at this level if they do not 
wish to use ours. 

6. Lock Manager 

lock - lock an object 

See text for explanation of ‘obj-mode’; ‘acc- 
mode’ is one of read, write, or read-intend- 
write. The boolean ‘locked’ is returned true if 
the object was locked; the caller never waits. 

FUNCTION lock(object-uid, obj-mode, act-mode): locked 

relock - change the access mode of an lock 

The boolean ‘changed’ is returned true if the 
access mode was changed. 

FUNCTION relock(object-uid, act-mode): changed 

unlock - unlock an object 
FUNCTION unIock(object-uid, act-mode) 

read-entry - find the lock entry record for an object 

the ‘lock-ret’ contains the object uid, process 
uid of the locking process, the object and ac- 
cess modes of the lock, and a transaction ID 
(see text). 

FUNCTION read-entry(object-uid): lock-ret 

iter-entry - iterate through all locked objects 

if ‘volume-uid’ is non-nil, restrict the iteration 
to just objects on that volume; ‘N’ starts at 
0, and after each call is the index of the next 
entry to be returned. 

FUNCTION iter-entry(volume-uid, N, object-uid): lock-ret 

Figure 6: Sample LOCK Operations 

The LOCK manager provides clients of the file sys- 
tem the means to obtain control over an object and to 
block processes that wish to use the object in an in- 
compatible way. The tools that the lock manager has 
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at its disposal are its own lock data base and the lock 
key attribute associated with each object. 

The lock operation supports two locking modes for 
objects. The more familar is the many readers or single 
writer lock mode [HOAR 741. A co-writers (co-located 
writers) lock mode is also provided, which makes no re- 
strictions on the number of readers and writers, but de- 
mands that they be co-located at a single network node. 
This mode allows the use of shared memory semantics, 
but only among processes located at the same node. 
(Guardians [LISK 791 employ this same notion, but at 
the level of linguistic support for distributed computa- 
tion.) For either mode, several types of access mode are 
supported: read, write, read with intent to write later 
[GIFF 791. 

Other operations include: unlock, to unlock an ob- 
ject; relock, to change one type of lock to another with- 
out unlocking; read-entry, to inquire whether an object 
is locked, and if so, how; and iter-entry, to list all locked 
objects on a node. 

An instance of the lock manager exists on every 
network node, and each lock manager keeps its own 
lock data base. This data structure records all of the 
objects, local or remote, that are locked by processes 
running on the local node. The same structure also 
records locks that remotely running processes are hold- 
ing over local objects. Lock and unlock requests for 
remote objects are always sent to the home node of the 
object involved, and both the requesting node and the 
home node update their data bases. The LOCK man- 
ager uses the REMFILE manager to handle the remote 
requests. 

The lock manager enforces compatible use of an 
object by not granting conflicting lock requests. How- 
ever, it guards against accidental or malicious subver- 
sion of the locking mechanism by communicating its 
current intent to the OSS on a per object basis through 
the lock key. When an object is locked in a way that ex- 
cludes any writers, the lock manager sets its lock key to 
the readbyall value. When an object is locked for use 
by a single writer, the lock manager sets its key to the 
node ID of the writing process. This causes both reads 
and writes from any other node in the network to be 
refused as concurrency violations. Today’s implemen- 
tation of the lock manager does not use the writebyall 
value for the lock key, however newly created objects 
have their lock key initialized to this value. 

Locks are either granted immediately or refused; 
processes never wait for locks to become available, so 
there is no possibility of deadlock (but indefinite post- 
ponement is of course possible). This kind of locking 

is not meant for distributed database types of transac- 
tions, or for providing atomicity in the face of node fail- 
ures, but for human time span locking uses such as file 
editing. For this same reason, locks are not timed out, 
since realistic time outs would be unreasonably long. 

6.1. Cache Consistency 

In a centralized virtual memory system, the main 
memory is the single cache over the permanent storage 
of a file system object. Since all of the users (both 
simultaneous and serial) of an object run on the same 
system, the memory cache is common to each of them 
and so no cache validation need ever be done. When the 
object is “unlocked” by one process, its pages may stay 
in the main memory cache for awhile, and if another 
process comes along to use the same file, that second 
process will always see the latest version of the object. 

In the DOMAIN distributed SLS the simultaneous 
users of a particular file are either all readers (in which 
case the data they see is identical), or all processes run- 
ning on the same node (in which case the main memory 
cache they see is the same as in the case of a single 
centralized system). All other simultaneous uses of a 
Ale system object are unsupported by the DOMAIN file 
system. However, we would like serial users of an ob- 
ject in the DOMAIN Ale system to each correctly see 
all changes made to the Ale by earlier users. 

The simplest demonstration of the problem we 
faced requires two nodes A and B. Suppose a one page 
long file system object 0 resides on a disk that is phys- 
ically connected to node A. A process on B locks the 
object 0 and reads its single page. That page moves 
through the network from A to B and ends up in the 
main memory of system B. After studying the page for 
some time, the process on B unlocks the Ale and goes 
about its business. A short time later, another process 
on B wants to read the same Ale 0. It locks 0 for read- 
ing and accesses that page. We wanted the second user 
of 0 to be able to dependably use (or knowingly dis- 
card) the COPY of the page cached in B’s main memory. 
It should be able to use that page (without refetching 
it from the network) if the file 0 has not been modified 
since the page was fetched, and it must refetch the page 
if the Ale has been modified. In this case, we needed to 
be able to answer the question: Did a process on A 
modify 0 between the time the page was delivered to 
B and the time the second B process wanted to use it? 
The mechanism described below allows us to efficiently 
answer that question, and to invalidate the cached copy 
if it was modified by A. 

319 



Proceedings of the 198.5 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity. 1985 March 12-14 

The version number (DTM) kept by the AST for 
each object can be used to synchronize main memory 
caches, as follows. The remote user of an object can 
prove the validity of his cached copy by verifying that 
the current DTM (as kept by the home node of the ob- 
ject) is identical to the DTM his node has remembered 
for the cached pages. Should they be different, the lo- 
cally cached pages need to be invalidated. The lock 
manager performs this validation at lock time for all 
remote objects: a request to lock a remote object that 
is granted returns the current version number (DTM) 
of the object, which is used in a conditional flush oper- 
ation, thereby removing stale pages of the object from 
the requesting nodes main memory. 

A second version of the caching problem is to insure 
that if (extending the example above) the first B pro- 
cess to use 0 had modified the object, that the change 
be available to a process on A that wants to use the 
object immediately after the B process releases it. To 
guarantee correctness in this case, copies of all changed 
pages of remote objects are delivered back to their home 
node before the object is unlocked. This function is 
performed by the lock manager as part of the unlock 
function: a request to unlock a remote object ilrst puri- 
fies the object (forces modified pages back to the home 
node), then frees the lock to make the object available. 

Note that concurrency violations can only occur in 
multi-node situations: if an object is never locked, and 
is used by only one node, that node is the only source 
of version number changes, and will hence always see 
a consistent view of the current version. This is why 
the LOCK and HINT managers’ state can be stored in 
virtual memory: the objects that store their code and 
data do not need to be locked because they are only 
used on one node. 

6.2. Discussion 

This two-layer approach to concurrency manage- 
ment has several desirable attributes. First is that it 
allows the (presumably) more complicated and larger 
higher level protocol to use the services of OSS to main- 
tain its data base. Second is its flexibility. Changes 
to the higher-level lock manager can be accomplished 
without affecting the OSS-level implementation at all. 
Also, because &e operations to manage the cache are 
exported, clients can &plement their own schemes, any 
number of which can coexist as long as they manage 
disjoint sets of objects. Lastly, the burden of lock key 
checking assigned to the per-page operations at the OSS 
level is very slight compared to the lock manager’s data 

base maintenance. 

One restriction that it would be desirable to re- 
lax is that the concurrency granularity of the current 
implementation is at the level of entire objects. The 
lock key as described is insufficient for some forms of 
concurrency control. However, if the higher-level pro- 
tocols wanted to take on the entire control task, the 
lock key could be set to its writebyall value to disable 
concurrency checking by the OSS-level. Note that the 
per-object techniques described above, but with a ver- 
sion number (DTM) per p&ge, would allow page level 
concurrency control. We already store the DTM with 
each page on backing store; thus keeping one DTM per 
main memory page frame would suffice for this exten- 
sion. 

7. Naming Objects 

For users, UIDs are not a very convenient means 
to refer to objects; for them, text string names are 
preferable. However, like UIDs, they should be uni- 
form throughout the network, so that the name of an 
object does not change from node to node. In DO- 
MAIN, text string names for objects are provided by a 
directory subsystem layered on top of the single level 
store. The name space is a hierarchical tree, like Mul- 
tics [ORGA 721 or UNIX [RITC 741, with directories 
at the nodes and other objects at the leaves. A direc- 
tory is just an object, with its own UID, containing pri- 
marily a simple set of associations between component 
names (strings) and UIDs. (A symbolic link facility, like 
that of Multics, is the other major feature of directo- 
ries.) A single component name is resolved in the con- 
text of a particular directory by Anding its associated 
UID (if any). The absolute path name of an object is 
an ordered list of component names. All but (possibly) 
the last are names of directories, which, when resolved 
starting from a network-wide distinguished “root” di- 
rectory, ‘lead to the UID of the object. Thus, an ab- 
solute path name, like a UID, is valid throughout the 
entire network, and denotes just one object. (There are 
other forms of path name besides the absolute form; 
these relative path names are mainly for convenience, 
since absolute path names are potentially very long in a 
large network with large numbers of objects. They are 
all expressible as the concatenation of some absolute 
path name preflx to the relative path name itself.) 
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8. Lessons 

The first implementation of the DOMAIN system 
was completed in March of 1981. Since then, the system 
has been tested, used, and measured extensively. At 
this writing, the largest operational DOMAIN network 
system is a single token-ring network consisting of over 
600 nodes, and DOMAIN installations of over 70 nodes 
are not uncommon. h a result of this almost four 
years of experience, we believe we have learned some 
important practical lessons - some of which validate 
(and in some cases vindicate) our choices and others 
that suggest alternative implementations. 

The problem with this implementation strategy for 
the naming server was that the storage system (natu- 
rally) provided no layer of abstraction for the notion of 
directory. The SLS provided access to the raw bits of 
a directory to each naming server that wanted to ma- 
nipulate that directory. This was Ane as long as each 
naming server in the network could operate on direc- 
tories of the same format. In practice, however, the 
naming servers are not the same on every node in the 
network (generally due to software updates occuring at 
different times) and the older naming servers are un- 
able to handle constructs added to directories by newer 
naming servers running on other nodes. 

8.1. Choosing SLS 

The DOMAIN-chosen technique mapping file sys- 
tem objects into process address space and then turn- 
ing h4MU faults into object read requests of the form 
(UID, pageno) has been very successful. It enjoys the 
benefits of simplicity of implementation, stateless re- 
mote servers and the efllcency of demand-paging lazy 
evaluation. Further, a single main memory cache man- 
agement mechanism equally manages object pages for 
local and remote objects. Our original goal for the re- 
mote paging system was to have remote sequential file 
system I/O take no more than two times longer than 
the flle I/O from a local disk. Over the years, this ratio 
has averaged around 1.8 to 1. 

Directories are an important example for a system 
like DOMAIN. They are permanent (stored on disk), 
heavily shared by multiple nodes, and most transac- 
tions on them take very little time. Also, they are likely 
candidates for extensions and improvements over time. 
Because we can never demand simultaneous update of 
software on every node in a network, and because we 
want very much to offer cross-release compatibility, we 
have found ourselves constrained by our original imple- 
mentation. 

8.2. Seduction by SLS 

The characteristics of network location trans- 
parency and a low penalty for remote transparent ac- 
cess combine to make the “map-it, use-it, unmap-it” 
approach to object manipulation terrifically attractive. 
However, we have learned that there are sometimes 
compelling pratical reasons for avoiding the allure of 
network transparency at the SLS level for some object 
managers that want to provide a higher level of abstrac- 
tion. 

As if that were not enough, we have found that the 
performance of the naming server tree-walk was signif- 
icantly increased by asking the node that owned the 
target directory do the lookup work itself, rather than 
sending pages of the directory over to the requesting 
node. This change demanded that the naming server 
learn the difference between local and remote directo- 
ries, and was an example of when “moving the work 
to the data” was a win over n moving the data to the 
computation.” 

8.3. Use Simple Protocols 

Our naming server, which implements the direc- 
tory hierarchy and the name-to-UID translation, was 
originally implemented completely on top of the loca- 
tion transparent SLS level. As a result, it mapped and 
operated on directories without regard to their location 
in the network. The naming server, then, did not, in 
fact could not, distinguish between directories on lo- 
cal disks and those on remote disks. As a result, the 
server was straightforward to implement, and as soon 
as it worked on local directories, it worked on remote 
directories. 

The key to the attainment of our remote perfor- 
mance goals has been the use of light-weight problem- 
oriented protocols. We have taken full advantage of 
the relatively clean environment provided by our high- 
speed ring network to avoid often costly protocol sup- 
ported reliability. 

Operations that are idempotent (i.e. for which re- 
peated applications have the same effect as a single ap- 
plication) use a connectionless protocol [SWIN 79) and 
retry often enough to achieve the desired level of relia- 
bility. Network operations to read and write attributes 
and pages are all of this form. 

Operations which are not idempotent (i.e. which 
have side effects), but which naturally have some state 

associated with them, can often be made idempotent 
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using a transaction ID. Each time a client sends a new 
request (not a retry) to perform an operation, it chooses 
a new transaction ID. If an operation was performed 
once with a particular transaction ID, the receipt of a 
second request with the same W should be rejected. 
File locking, for example, saves the the transaction W 
of the operation which set the lock along with the lock 
state. 

The SLS protocols we use are inexpensive because 
they are end-to-end protocols [SALT 801 and do not 
rely on the communications substrate to provide any 
service guarantees. Instead, each remote operation in- 
dividually implements the least mechanism required by 
its reliability semantics. 

8.4. Obtaining High Performance 

Much has been written on this subject lately for 
distributed systems. (In particular, see [CHER 831 and 
[LAZO 841.) The DOMAIN file system has evolved over 
the years to provide as much as six times the perfor- 
mance of its original implementation. Certainly in the 
case of completely diskless nodes, but also very fre- 
quently in the case of disked nodes, the performance- 
critical information needed is elsewhere in the network, 
Our performance goals coupled with our aggressive 
remote-to-local ratio goal has influenced the implemen- 
tation in several ways. 

The disk subsystem implements fairly familiar 
techniques for performance enhancement including: 
physical locality optimizing, control structure caching, 
batched reads, and clustered writes. Physical locality is 
encouraged by the increasingly clever allocation of suc- 
cessive file blocks and their Ale maps and VTOC entries. 
The basic disk control structures (free-block allocation 
tables and VTOC control blocks) are cached in their 
own set of control block buffers. File page reads are 
“batched” at the SLS-level. Recall that in DOMAIN, all 
Ale read activity is caused by touching the bytes of the 
file with normal CPU instructions and thereby page- 
faulting on the needed page. When the SLS catches 
the page-fault and determines the need for some (UID, 
pageno), it may ask the lower levels for up to 31 addi- 
tional successive object pages. Most disk write opera- 
tions are instigated by the page purifier process, and it 
tries to hand the low-levels a large collection of pages to 
write so that seek-ordering and rotational-ordering can 
be performed. In addition, for remote file system I/O, 
DOMAIN implements trans-network batched reads: a 
single read page request message may result in as many 
as eight reply pages in anticipation of their need. In this 

way, the ultimate client receives more of the benefit of 
disk page touch-ahead. 

We have ended up caching more kinds of infor- 
mation than we originally expected and probably in 
slightly different ways. In cases where the cost of a 
disk access would have been barely acceptable, the cost 
of a network message pair in addition encouraged the 
use of more aggressive caching strategies. 

8.5. Indefinite Postponement 

In theory, the remote file server running on one 
node can service requests from any number of clients. 
In practice, however, a single server can be flooded 
with requests from ten, twenty, even one hundred hun- 
gry clients. Because the communications protocol layer 
provides no delivery guarantees to the higher layers, it 
blithely discards messages it receives after its assorted 
queues and buffers All up. In theory, the issuer of the 
discarded message will send a time-out based retry and 
all will be well. In practice, indefinite postponement is 
a definite possibility. As networks get larger, and in 
particular as server nodes get busier, a solution that 
formally addresses this problem completely is needed 
(rather than an ad hoc approach that, for example, in- 
creases the depth of the queues periodically). 

8.6. Conclusion 

The essential ingredients to good performance of 
a distributed Ale system include all those things re- 
quired for a good centralized Ale system: caching, bulk 
data transfer from the disk, and good object locality 
on the disk. In addition, the distributed file system 
needs more: it needs caching of remote data to avoid 
as many remote operations as possible; cheap, fast pro- 
tocols; and bulk data transfer over the network, even 
when the protocols are very cheap. 
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