

 1

The Network Computing Architecture and System:

An Environment for Developing Distributed Applications

Terence H. Dineen, Paul J. Leach, Nathaniel W. Mishkin,
Joseph N. Pato, Geoffrey L. Wyant

Apollo Computer Inc.
...!{wangins,yale,mit-eddie}!apollo!mishkin

1. Introduction

The Network Computing Architecture (NCA) is an object-oriented framework for developing
distributed applications. The Network Computing SystemT (NCST) is a portable implementation
of that architecture that runs on UnixR and other systems. By adopting an object-oriented ap-
proach, we encourage application designers to think in terms of what they want their applications
to operate on, not what server they want the applications to make calls to or how those calls are
implemented. This design increases robustness and flexibility in a changing environment.

NCS currently runs under Apollo’s DOMAIN/IXT [Leach 83], 4.2BSD and 4.3BSD, and Sun’s
version of Unix. Implementations are currently in progress for the IBM PCR and VAX/VMSR.
Apollo Computer has placed NCA in the public domain.

In addition to its object orientation, some interesting features of the system are as follows. It
supplies a transport-independent remote procedure call (RPC) facility using BSD sockets as the
interface to any datagram facility. It provides at-most-once semantics over the datagram layer,
with optimizations if an operation is declared to be idempotent. It is built on top of a concurrent
programming support package that provides multiple threads of execution in a single address
space, although versions can be made for machines that just have asynchronous timer interrupts.
The data representation supports multiple scalar data formats, so that similar machines do not
have to convert data to a canonical form, but can instead use their common data formats. The
RPC interface definition compiler is extensible. Procedures to do the client/server binding can be
attached to data types defined in the interface. Also, complex data types can be marshalled by
user-supplied procedures which convert such types to data types the compiler understands. There
is a replicated global location database: Using it, the locations of an object can be determined
given its object ID, its type, or one of its supported interfaces.

There are several motivations for NCA. Large, heterogeneous networks are becoming more com-
mon. Users of systems in such networks are often frustrated by the fact that they can’t get those
systems to work cooperatively. Over the last few years, advances have been made in allowing data
sharing to occur between the systems, but not compute sharing. Tools to allow the effective use of
the aggregate compute power have not been available. The inability to share computing resources
has become even more aggravating as more specialized processors (e.g. ones designed to run
numerical applications fast) have become more widespread. Current technology obliges users of
those processors to resort to FTP and Telnet. Even in an environment of systems of relatively
similar power, a network computing architecture is called for: There are applications that can take
advantage of many systems in parallel. (Parallel make is the most obvious example.) Also,
replicating resources over a number of machines increases the reliability seen by users of the
network.

It is important to understand that there is almost no network application that can’t be imple-
mented without NCA/NCS. However, the implementation is bound to be more difficult, less gen-
eral, and harder to install on a variety of systems. Further, experience has shown that some
obviously useful network applications simply don’t get written because of these problems. The
existence of NCA/NCS helps to solve these problems and as a result, expand the set of network
applications.

 2

2. Architecture

Figure (1) illustrates NCA’s overall structure.

Basic Heterogenous Interconnect

User Interfaces

Clients
Application

Servers

Server Support Tools

Brokers

Figure 1. NCA’s overall structure.

2.1 Heterogeneous Interconnect

The lowest level provides the basic interconnection to heterogenous computing systems. At this
layer NCA currently defines a remote procedure call protocol (NCA/RPC), a Network Interface
Definition Language (NIDL), and a Network Data Representation (NDR). RPC is a mechanism
that allows programs to make calls to subroutines where the caller and the subroutine run in
different processes, most commonly on different machines. The RPC approach and an implemen-
tation similar to ours is described in detail by Birrell and Nelson [Birrell 84]. NIDL is a high-level
language used to specify the interfaces to procedures that are to be invoked through the RPC
mechanism. NCS includes a portable NIDL compiler that takes NIDL interfaces as input and
produces stub procedures that, among other things, handle data representation issues and connect
program calls to the NCS RPC runtime environment that implements the NCA/RPC protocol. The
relationships among the client (i.e. the caller of a remoted procedure), server, stubs, and NCS
runtime is shown in figure (2).

Client

Client stub

call

Client process Server process

return

Server stub

NCS runtime

call return callreturn

callreturn

network
messages

Interface

NCS runtime

call
return Procedures

Server

apparent
flow

Figure 2. Relationships among client, server, stubs and NCS runtime

2.2 Server Support Tools

Augmenting the heterogenous interconnect layer are the server support tools. These tools simplify
the writing of complex applications in a distributed environment. Currently these consist of the

 3

Data Replication Manager (DRM) and Concurrent Programming Support (CPS). DRM provides a
weakly consistent, replicated database facility. It is useful for providing replicated objects when
high availability is important and weak consistency can be tolerated. CPS provides integrated
lightweight tasking facilities. CPS allows multi-threaded servers to written easily.

2.3 Brokers, Clients, Servers and User Interfaces

Built on top of the server-support tools are a set of brokers. A broker is a third party agent that
facilitates transactions between principals. In a network computing environment brokers are pri-
marily useful in determining object locations, but can also be used for establishing secure commu-
nications (i.e. authentication), associatively selecting objects, issuing software licenses, and a vari-
ety of other administrative chores not directly related to the operation of the principals. The role
of brokers is shown in figure (3).

Clients: Application
Servers:

File Access
Print
Mail
Batch

Batch Q Server

....

....

File Server
Print Q Server
Mail Server
Batch Q Server

....

Compute
Slot Broker

(Consumers)
(Producers)

Brokers:

Naming/Locating
Registry

Compute Slot
Allocation

Architectural

(mainly RPC)

Authentication

....

Interfaces

Architectural
Interfaces

Architectural
Interfaces

Figure 3. The role of brokers in NCA

Client programs and application servers make use of the three base layers. Application servers are
the producers of services and clients the consumers . Servers invoke brokers to make their
existence known. Clients can invoke brokers to locate application servers and then use the under-
lying RPC mechanism to make use of the services provided. The application server may be in turn
a client of other distributed services.

From user’s perspective, user interfaces tie all the pieces together. However, user interfaces are
not part of NCA and will not be discussed in this paper.

2.4 Unique Identifiers

An important aspect of NCA is its use of universal unique identifiers (UUIDs) as the most primi-
tive means of identifying NCA entities (e.g. objects, interfaces, operations). UUIDs are an exten-
sion of the unique identifiers (UIDs) already used throughout Apollo’s system [Leach 82]. Both
UIDs and UUIDs are fixed length identifiers that are guaranteed to refer to just one thing for all
time. The principal advantages of using any kind of unique identifiers over using string names at
the lowest level of the system include: small size, ease of embedding in data structures, location
transparency, and the ability to layer various naming strategies on top of the primitive naming
mechanism. Also, identifiers can be generated anywhere, without first having to contact some

 4

other agent (e.g. a special server on the network, or a human representative of a company that
hands out identifiers).

UIDs are 64 bits long and are guaranteed to be unique across all Apollo systems by embedding in
them the node number of the system that generated the UID and the time on that system that the
UID was generated. To make it possible to generate unique identifiers on non-Apollo system we
defined UUIDs to be 128 bits and made the encoding of the identity of the system that generates
the UUID more flexible.

The remainder of this paper discusses several aspects of NCA and NCS: NCA’s object-oriented
approach; NIDL; NDR; the NIDL compiler; the Location Broker used in connecting clients with
servers; and the networking model and protocol used by NCS. We conclude with a description of
future directions we expect NCA and NCS to follow.

3. The Object-Oriented Approach

NCA is object-oriented. By this we mean that it follows a paradigm established by systems such as
Smalltalk [Goldberg 83], Eden [Almes 83, Lazowska 81], and Hydra [Wulf 75, Cohen 75]. The
basic entity in an object-oriented system is the object. An object is a container of state (i.e. data)
that can be accessed and modified only through a well-defined set of operations (what Smalltalk
calls messages). The implementation of the operations is completely hidden from the client (i.e.
caller) of the operations. Every object has some type (what Smalltalk calls a class). The imple-
mentation of a set of operations is called a manager (what Smalltalk calls a set of methods). Only
the manager of a type knows the internal structure of objects of the type it manages. Sets of
related operations are grouped into interfaces. Several types may support the same interface; a
single type may support multiple interfaces.

For example, consider an interface called directory containing the operations add_entry,
drop_entry, and list_entries. This interface might be supported by two types: directory_of_files
and print_queue. There are potentially many objects of these two types. That there are many
objects of the type directory_of_files should be obvious. By saying that there are many
print_queue objects we mean that a system (or a network of connected systems) might have many
print queues say, one for each department in a large organization.

3.1 Motivation

The reason for using the object-oriented approach in the context of a network architecture is that
this approach lets you concentrate on what you want done, instead of where it’s going to be done
and how it’s going to be done: objects are the units of distribution, abstraction, extension, recon-
figuration, and reliability.

Distribution. Distribution addresses the question of where an operation is performed. The answer
to this question is that the operation is performed where the object resides. For example, if the
print queue lives on system A, then an attempt to add an entry to the queue from system B must
be implemented by making a remote procedure call from system B to system A. (This implemen-
tation fact is hidden from the program attempting to add the entry.)

Abstraction. Abstraction addresses the question of how an operation is performed. In NCA, the
object’s type manager knows how the operation is performed. For example, a single program
list_directory could be used to list both the contents of a file system directory and the contents of
a print queue. The program simply calls the list_entries operation. The type managers for the two
types of objects might represent their information in completely different ways (because, say, of
the different performance characteristics required). However, the list_directory program uses only
the abstract operation and is insulated from the details of a particular type’s implementation.

Extension. The object-oriented approach allows extension; i.e. it specifies how the system is en-
hanced. In NCA, there are two kinds of extensions allowed. The first is extension by creation of
new types. For example, users can create new types of objects that support the directory interface;
programs like list_directory that are clients of this interface simply work on objects of the new
type, without modification. The second kind of extension is extension by creation of new inter-
faces. A new interface is the expression of new functionality.

Reconfiguration. Because of partial failures, or for load balancing, networked systems sometimes
need to be reconfigured. In object-oriented terms, this reconfiguration takes place by moving

 5

objects to new locations. For example, if the system that was the home for some print queue failed
because of a hardware problem, the system would be reconfigured by moving the print queue
object to a new system (and informing the network of the object’s new location).

Reliability. The availability of many systems in a network should result in increased reliability.
NCA’s approach is to foster increased reliability by allowing objects to be replicated. Replication
increases the probability that least one copy of the object will be available to users of the object.
To make replication feasible, NCS provides tools to keep multiple replicas of an object in sync.

While NCA is object-oriented and we believe that applications that use the object-oriented capa-
bilities of NCA will be more robust and general than those that don’t, it is easy to use NCS as a
conventional RPC system, ignoring its object-oriented features.

4. Network Interface Definition Language

The Network Interface Definition Language (NIDL) is the language used in the Network Comput-
ing Architecture to describe the remote interfaces called by clients and provided by servers. Inter-
faces described in NIDL are checked and translated by the NIDL compiler.

NIDL is strictly a declarative language it has no executable constructs. NIDL contains only
constructs for defining the constants, types, and operations of an interface. NIDL is more than an
interface definition language however. It is also a network interface definition language and, there-
fore, it enforces the restrictions inherent in a distributed computing model (e.g. lack of shared
memory).

4.1 NIDL Language Constructs

A NIDL interface contains an header, constant and type definitions, and operation descriptions.
The header provides the interface identification: its UUID, name, and version number. The
UUID is the name by which an interface is known within NCA. It is similiar to the program
number in other RPC systems, except that it is not centrally assigned. The interface name is a
string name for the interface which is used by the NIDL compiler in naming certain publicly
known variables. The version number is used to support compatible enhancements of interfaces.

A standard set of programming language types is provided. Integers (signed and unsigned) come
in one, two, four, and eight byte sizes. Single (four byte) and double (eight byte) precision float-
ing point numbers are available. Other scalars include signed and unsigned characters, as well as
booleans and enumerations.

In addition to scalar types, NIDL provides the usual type constructors: structures, unions, point-
ers, and arrays. Unions must be discriminated. (I.e. non-discriminated unions are not permitted.
The actual data values must be known at runtime so that it can be correctly transmitted to the
remote server.) Pointers, in general, are restricted to being top-level. That is, pointers to other
pointers, or records containing pointers are not permitted. Later, we’ll see how this restriction can
be relaxed. Arrays can be fixed in size or have their size determined at runtime.

Operation declarations are the heart of a remote interface definition. These define the procedures
and functions that servers implement and to which clients make calls. All operations are strongly
typed. This enables the NIDL compiler to generate the code to correctly copy parameters to and
from the packet and to do any needed data conversions. Operation declarations can be optionally
marked to have certain semantic properties, for example whether they are idempotent. (An idem-
potent procedure is one that can be executed many times with no ill-effect.)

All operations are required to have a handle as their first parameter. This parameter is similar to
the implicit self argument of Smalltalk-80 or the this argument of C++ [Stroustrup 86]. The
handle argument is used to determine what object and server is to receive the remote call. NIDL
defines a primitive handle type named handle_t. An argument of this type can be used as an
operation’s handle parameter. Clients can obtain a handle_t by calling the NCS runtime, provid-
ing an object UUID and network location as input arguments. Use of more abstract kinds of
handles is described below.

Handle arguments can be implicit. An interface definition can declare that a single global variable
should be treated as the handle argument for all operations in the interface. While this style

 6

conflicts with some of the goals of the object-oriented approach (e.g. it makes it harder to make
calls on different objects using the same interface), it can be useful in cases where an existing
local interface is being converted to work remotely.

4.2 NIDL Example

Figure (4) is a short example of an interface described in NIDL. The example is of an interface to
a bank object that supports a single operation: deposit money into an account.

(1) Defines the UUID by which this interface is known. This the first version of this interface. If
in the future, new operations are added, the version number should be incremented. (2) Declares
the interfaces upon which this interface is dependent. The import statement is similiar to #include,
except that the named interface is not textually included. The contents are made available for the
importer to refer to types and constants defined in that interface. This allows factoring out a
common set of types into a base interface. (3) Defines a set of types (account and account name
types) that are used by the bank operations. Finally (4) defines the operation itself.

A variant of NIDL that looks Pascal-like (as opposed to the C-like version of which figure (4) is
an example) is also available. Regardless of the variant used as input to the NIDL compiler, the
output is the same.

[uuid(334033030000.0d.000.00.87.84.00.00.00), version(1)] (1)
interface bank {

import
nbase.imp.idl ; (2)

typedef (3)
long int bank$acct_t;

typedef
char bank$acct_name_t[32];

void bank$deposit((4)
[in] handle_t h,
[in] bank$acct_t acct,
[in] long int amount,
[out] status_$t *status

);
};

Figure 4. Example interface

4.3 Object-Oriented Binding

One drawback of the language as described so far is that all operations are required to have a
primitive handle_t as their first argument. This means clients need to embed these handles in their
programs, and to manage the binding to servers themselves. We would like to achieve as much
local-remote transparency as possible (i.e. to make programs insensitive to the location of the
objects upon which they operate). Embedding primitive handles in client programs destroys much
of this transparency. To relieve clients of the need to manage these handles, we introduced the
notion of object-oriented binding.

Object-oriented binding comes into play when the first parameter to an operation is not a han-
dle_t. In this case, the type is taken to represent some more abstract, client-oriented handle.
Since to actually make remote calls, a handle_t is required, some way is needed to translate the
abstract handle into a handle_t. The person who creates the abstract type is thus obliged to write a
procedure to do the conversion. This procedure is assumed to have the name type_bind (where
type is the type name of the abstract handle) and is automatically called from stubs when the
remote call is made. You can view the abstract handle as an object (in the Smalltalk sense) which
supports the bind operation.

To make this more concrete, we could reformulate the above bank example in terms of object-
oriented binding. Instead of taking a handle_t as its first parameter, bank$deposit could take a
bank name, of type bank$name. The NIDL compiler would generate a call to bank$name_bind to
translate from a bank name to the primitive handle_t. This routine would probably call upon some

 7

sort of naming server to look up the bank location. The bind routine might also choose to cache
location information to make later translations faster.

Object-oriented binding hides the details of handle binding from the client and allows interfaces to
be designed in a more abstract, client-oriented fashion. This provides a higher level of local-re-
mote transparency than other systems which always require the client to manage handles or ex-
plicitly name the remote host on each call.

4.4 Marshalling Complex Types

In the section on NIDL language constructs, we stated that pointers could not be nested. The
reason is that such nesting would require the NIDL compiler to generate code to transmit general
graph structures. However, permitting only top-level, non-nested pointers can be a severe limita-
tion in the design of an interface. For example, it excludes passing tree data structures to remote
procedures.

To provide an escape from this restriction, NIDL allows a type to have an associated transmissi-
ble type. The transmissible type is a type that the NIDL compiler does know how to marshall.
Any type that has an associated transmissible type must have a set of procedures to convert that
type to and from its transmissible type. In the example of the binary tree, the transmissible type
could be an array. The tree$to_xmit_rep procedure would walk the tree to build a representation
of it in the array, and the tree$from_xmit_rep procedure would reconstruct the binary tree from
the array.

Transmissible types may be associated with any type, not just types using nested pointers. Bitmaps
are an example. It may be represented internally as a fixed size array of integers. Even though the
NIDL compiler is capable of marshalling this, it may be more efficient to have it transmitted in a
run-length encoded (RLE) form. So the bitmap type could have an associated RLEBitmap type,
and a set of procedures for converting to and from the RLE form.

5. Network Data Representation

Communicating typed values in a heterogenous environment requires a data representation proto-
col. A data representation protocol defines a mapping between typed values and byte streams. A
byte stream is a sequence of bytes indexed by nonnegative integers. Examples of data representa-
tion protocols are Courier [Xerox 81] and XDR [Sun 86]. A data representation protocol is
needed because different machines represent data differently. For example, VAXes represent
integers with the least significant byte at the low address and 68000s represent integers with the
most significant byte at the low address. A data representation protocol defines the way data is
represented so that machines with different local data representation can communicate typed
values to each other.

NCA includes a data representation protocol called Network Data Representation (NDR). NDR
defines a set of data types and type constructors which can be used to specify ordered sets of
typed values. NDR also defines a mapping between ordered sets of values and their representa-
tions in messages.

Under NDR, the representation of a set of values consists of two items: a format label and a byte
stream. The format label defines how scalar values are represented (e.g. VAX or IEEE floating
point) in the byte stream; its representation is fixed by NDR as a data structure representable in
four bytes.

NDR supports the scalar types boolean, character, signed integer, unsigned integer, and floating
point. Booleans are represented in the byte stream with one byte; false is represented by a zero
byte and true by a non-zero byte. Characters are represented in the byte stream with one byte;
either ASCII or EBCDIC codes can be used. Four sizes of signed and unsigned integers are
defined: small, short, long, and hyper. Small types are represented in the byte stream with one
byte, short types with two bytes, long types with four bytes, and hyper types with eight bytes.
Either big- or little-endian representation can be used for integers; two’s complement is assumed
for signed integers. The two sizes of floating point type are single and double. Single floating point

 8

types are represented with four bytes and double floating point types use eight bytes. The sup-
ported floating point representations are IEEE, VAX, Cray, and IBM.

In addition to scalar types, NDR has a set of type constructors for defining aggregate types. These
include fixed size arrays, open arrays, zero terminated strings, records, and variant records.

Fixed sized arrays have a known number of elements. Their values are represented in the byte
stream simply as a sequence of representations of the values of the elements. Each element value
is represented according to the element type of the array. Open array types have a fixed first
index value and element type but their final index value is not known from their type. Therefore,
it is necessary to represent the value of the index of the last element in the array immediately
before the representation of the values of the array elements.

Zero terminated strings can be viewed as a special case of open arrays; they are open arrays of
characters whose last index value is defined by a terminating zero byte. To support this common
data type in an efficient manner, NDR represents such values with an explicit length value fol-
lowed by the characters of the string including the terminating zero character.

Record values are represented in the byte stream by representations of the values of their fields in
the order defined by the record type. Variant records are assumed to have an initial set of fixed
fields which includes a tag field used to discriminate among the possible variants. Representations
of the values of the fields of the selected variant follow the representations of the values of the
fixed fields of a variant record value.

Some types may appear to be missing from NDR. NDR has no enumerated types, bit set types, or
a pointer type constructor. The definition of a NIDL maps such types onto their representations in
an NDR byte stream. For example, NIDL maps enumerated types and bit sets onto the NDR
unsigned integer type of the appropriate size. Typed pointer values are mapped into the NDR type
which represents the type that the pointer references.

NDR is abstract in that it does not define how the format label and the byte stream are repre-
sented in packets. The NIDL compiler and the NCA/RPC protocol are users of NDR: They work
together to generate the format label and byte stream, encode the format label in packet headers,
fragment the byte stream into packet-sized pieces, and put the fragments in packet bodies.

The important features of NDR are its flexible representation of scalar values, its use of natural
alignment, and its extensibility.

By using a format label to specify an interpretation of the scalars in a byte stream NDR supports a
recipient makes it right approach to data conversion in a heterogenous environment. A sending

process can use its preferred encoding of scalars when constructing a byte stream providing that it
is one of the defined options. A receiving process needs to convert data representations only when
the format specified in the incoming format label differs from its own preferred format. Thus, two
compatible machines can communicate efficiently without needing to convert to a conventional
network format and back again on each transmission. NDR defines a broadly useful but not
universal set of scalar formats. We believe that our choices are reasonable for promoting
heterogenous network computing combining workstations and special purpose server machines.
On the other hand, it is important to keep the space of possible formats to a reasonable size
because each recipient needs to convert any incoming scalar format to its own.

NDR requires that values be natually aligned in the byte stream. Natural alignment means that all
values of size 2^n are aligned at a byte stream index which is a multiple of 2^n, up to some limiting
value of n; NDR choses this limit to be 3. (I.e. scalars of size up to eight bytes are naturally
aligned.) This permits, but does not require, implementations of NCA to align buffers for the byte
stream so that stub code can use natural operators to manipulate values in the byte stream effi-

 9

ciently and without alignment faults. This also helps to promote communication ease between
different kinds of machines in a heterogenous environment.

By its use of a format label NDR is an extensible data representation protcol. The format label
could be extended to specify other aspects of the data representation such as packing disciplines,
dynamic typing schemes, new encodings of scalars, or new classes of scalars.

6. The NCS NIDL Compiler and Stub Functions

NCS includes a compiler which mediates between NIDL on the one hand and NDR and the NCS
runtime on the other. The functions of the compiler are: checking the syntax and semantics of
interface definitions written in NIDL; translating NIDL definitions into declarations in implemen-
tation languages such as C; and generating client and server stubs for executing the remote opera-
tions of an interface.

The NIDL compiler is organized as a front-end component and a back-end component. The
front-end parses and checks an interface definition and produces an abstract syntax tree (AST)
intermediate form. If the interface definition is sound, the front-end then passes this tree to the
back-end which generates implementation language include files and stub code files for the inter-
face.

NCS’s NIDL compiler is implemented for portability in C using YACC and LEX. It is available in
source form to encourage its use and extension in heterogeneous networked environments.

6.1 NIDL Compiler Functions

Distributed object-oriented programming imposes certain restrictions on the semantics of inter-
faces. It is part of the compiler’s job (along with the design of NIDL) to enforce these restrictions.
We illustrate the front-end’s semantic checks with some examples. All types used in a definition
must be well defined. All parameters and fields whose type is an open array require the use of a
last_is attribute to give their size at call time. Every remote interface requires a UUID. Every
operation of an interface requires an implicit or explicit handle parameter to support object-ori-
ented programming.

The second major function of the NIDL compiler is to derive files which declare the interface’s
constants, types, and operations in the languages in which client applications and servers are
written. These files are included in client and server programs which use or implement the remote
operations of an interface. For the current implementation the supported languages are C and
Pascal. Generating these files is done by a fairly straightforward walk over the AST; adding the
capability to generate include files in other Algol-like languages would be a simple exercise.

In addition to declaring the constants, types, and operations of an interface, the derived include
files declare two important statically initialized variables defined for each interface. One is the
interface specification (ifspec) which encapsulates the identity of the interface and its salient
properties (number of operations, well known ports used, etc.). The ifspec variable is used in the
binding and registering operations of the NCS runtime. The second variable is the server Entry
Point Vector (EPV) which holds pointers to the server side’s stub routines. This EPV variable is
used by a server process when registering as a server for an interface; it is used by the NCS
runtime to dispatch incoming calls.

The third major function of the NIDL compiler is to generate files of stub code for the operations
defined in an interface. There are two such files one contains client side stub routines and the
other contains server side stub routines. This emitted code is in standard C, which we use as a
universal assembler to promote portability. Each operation in an interface gives rise to a client
stub routine and a server stub routine. The following section discusses the functions of these
routines.

6.2 Stub Functions

Client stub routines are called by clients of an interface; they have the same interface as the
operation for which they stand in. Server stub routines are called by the server side NCS runtime;
their interface is defined by NCS. Client stub routines call the client side NCS runtime to perform

 10

remote calls. Server stubs call the manager’s implementation of an operation to provide the actual
service. Thus, the first function of stubs is to hide the NCS runtime from users and implementors
of remote interfaces and to create the illusion of accessing a remote procedure as though it were
local.

To communicate input and output arguments and function results between callers and called
routines the stub must marshall and unmarshall argument values into call and reply packets. This
is done in accordance with NDR and the conventions of NCS. Unmarshalling code is also respon-
sible for detecting and performing necessary data conversions by comparing the incoming format
label with the local formats. Data conversion is done by a combination of inline code and support
operations in the NCS runtime.

The stubs also need to calculate the size requirements for call and reply packets based on the
dynamic size of input and output arguments. The size information is used to determine whether or
not a pre-declared packet on the stack is large enough. If not, the stubs need to allocate and free
storage for packets. It is not the job of the stub to break up a large packet into pieces that can be
sent over the network the NCS runtime provides the capability of handling arbitrarily sized
packets.

Client side stubs map the operations of an interface to the operation number used by the NCS
runtime to identify operations; they also pass options designating the desired calling semantics and
the ifspec derived from the NIDL declaration of an operation to the NCS runtime’s remote call
primitive.

On the server side, the stub routines are responsible for managing storage to be used as the server
side surrogates for dynamically sized arguments. This is necessary to support the server’s illusion
of large data structures passed to it by reference.

The stubs also manage the more elaborate features of NIDL described in section 3 above. Client
stubs support automatic binding by calling users’ binding and unbinding routines when necessary.
Implicit handles are made explicit to the NCS runtime by client stub routines. Users’ marshalling
routines are invoked as necessary by both client and server stubs as part of marshalling input and
output arguments of the appropriate types.

In summary, the stub generation function of the NIDL compiler automates the production of a
large amount of protocol code based on a routine’s interface defintion. This is important because
the code is complex enough to make its hand coding very error prone and tedious. Hand produc-
ing this kind of code has been a major impediment to building distributed systems in the past.

7. Location Broker

A highly available location service is a fundamental component of a distributed system architec-
ture. Objects representing people, resources, or services are transient and mobile in a network
environment. Consumers of these entities cannot rely on a priori knowledge of their existence or
location, but must consult a dynamic registry. When consumers rely solely on a location service
for accessing objects, it becomes essential that the location server remain available in the face of
partial network failures.

The NCA Location Broker (NCA/LB) protocol is designed to provide a reliable network-wide
location broker. This protocol is defined by a NIDL interface and is thereby easily used by any
NCA/RPC based application.

The NCA/LB, unlike location services like Xerox SDD’s Clearinghouse [Oppen 83] or Berkeley’s
Internet Name Domain service (BIND) [Terry 84], yields location information based on UUIDs
rather than on human readable string names. The advantages of using UUIDs were described
earlier.

7.1 Locating

An object’s type manager must first advertise its location with the Location Broker in order for
that objected to locatable. A manager advertises itself by registering its location and its willingness
to support some combination of specific objects, types of objects, or interfaces. A manager can

 11

choose to advertise itself as a global service available to the entire network, or limit its registration
to the local system. Managers that choose the latter form of registration do not make themselves
unavailable, but rather limit their visibility to clients that specifically probe their system for loca-
tion information.

Clients find objects by querying the Location Broker for appropriate registrations. A client can
choose to query for a specific object, type, interface, or any combination of these characteristics.
When operations are externally constrained to occur at a specific location, a client can choose to
query the location broker at the required system for managers supporting the appropriate object.

7.2 Location Broker Organization

The Location Broker is divided into two components. The Global Location Database is a repli-
cated object containing the registration information of all globally registered managers; the proc-
esses that manage this database are called the Global Location Broker. The NCS runtime imple-
mentation of the Global Location Broker uses the Data Replication Manager (DRM) to maintain
the database. DRM provides a weakly consistent replicated KSAM package. Weak consistency
implies that replicas of the Global Location Database object may be inconsistent at any time, but,
in the absence of updates, that all replicas will converge to a consistent state within a finite amount
of time. This form of consistency provides a high degree of both read and update availability to
the Global Location Database. It is not necessary to be able to communicate with all replicas of
the object to affect a change in the registration database. The DRM assumes the responsibility of
propagating updates to the replicas in a timely fashion.

A Local Location Broker supports managers that wish to limit their registration to the local system.
Access to these registrations if provided in two ways. A client can directly query the Location
Broker at specific node to determine the objects and managers that are registered there. Alter-
nately, a client can simply execute a remote operation while supplying an incompletely bound
handle (i.e. one which specified only an object and system, not a particular server process).
Remote calls made using such a handle are delivered to the Local Location Broker, which serves
as a forwarding agent if an appropriate manager has registered itself locally. This mechanism
obviates the need for users of the NCA to use well known ports.

The division of the Location Broker into two distinct entities is, to a large degree, an NCS runtime
implementation decision. Logically the Local Location Database object and the Global Location
Database object are a single partitioned object, and, in fact, access to these databases is provided
through a common set of operations which select the target based on lookup keys.

8. The NCA/RPC Protocol and NCS Implementation

The NCA/RPC protocol is designed to be low cost for the common cases and independent of the
underlying network protocols on top of which it is layered. The NCS runtime implementation of
the NCA/RPC protocol is designed to be portable.

8.1 Protocol

The NCA/RPC protocol is designed so that a simple RPC call will result in as few network mes-
sages and have as little overhead as possible. It is well known that existing networking facilities
designed to move long byte streams reliably (e.g. TCP/IP) are generally not well suited to being
the underlying mechanism by which RPC runtimes exchanges messages. The primary reason for
this is that the cost of setting up a connection using such facilities and the associated maintenance
of that connection is quite high. Such a cost might be acceptable if, say, a client were to make 100
calls to one server. However, we don’t want to preclude the possibility of one client making a call
to 100 servers in turn. In general, we expect the number of calls made from a particular client to a
particular server to be relatively small. The reliable connection solution is also unacceptable from
the server’s perspective: A popular server may need to handle calls from hundreds of clients over
a relatively short period of time (say 1-2 minutes). The server does not want to bear the cost of
maintaining network connections to all those clients.

The well-known way of getting around the well-known problem of using reliable network connec-
tions is to make the RPC protocol implement exactly the reliability it needs on top of an unreliable
network service (e.g. UDP/IP). This approach has the additional advantage that some systems

 12

(e.g. embedded microprocessors) can not or do not support any reliable network service; how-
ever, if they’re connected to a network at all, you can be sure that they’ll at least supply an
unreliable service. Further, unreliable services tend to be more similar across protocol suites than
do reliable services. (For example, some reliable protocols might return errors immediately if the
network partitions even though a virtual circuit is currently idle, while others might defer until the
next time I/O is attemped.) This similarity means that the RPC protocol can be accurately imple-
mented in more protocol suites than if it would be possible if it assumed a reliable service.

All that the NCA/RPC protocol assumes is an underlying unreliable network service. The protocol
is robust in the face of lost, duplicated, and long-delayed messages, messages arriving out of
order, and server crashes. When necessary, the protocol ensures that no call is ever executed
more than once. (Calls may execute zero or one times and, in the face of network partitions or
server crashes, the client may not know which.)

The NCA/RPC protocol operates roughly as follows. The client side sends a packet describing the
call (a request packet) and waits for a response. The server side receives and dispatches the
request for execution, and sends a packet in response that describes the results of executing the
call (the response packet). If the client doesn’t receive a response to a request within a particular
amount of time, it can inquire about the status of the request by sending a ping packet. The server
either sends back a working packet, indicating that execution of the request is in progress, or a
nocall packet, which means that the request has been lost (or that the server has crashed and
rebooted) and the client needs to resend it. The protocol gets slightly more complicated if the
input or output arguments do not fit into one packet.

If a called procedure is non-idempotent, the protocol ensures that the server executes the call at
most once. To detect old (duplicate) requests, the server keeps track of the sequence number of
the previous request for each client with which it has communicated. However, the server consid-
ers this information to be discardable and it may discard it if it hasn’t heard from the client in a
while. (I.e. there is no permanent connection between the client and server.) Thus, it is possi-
ble for a long-delayed duplicate request to arrive after the server has discarded the information
about the requesting client. To handle this case, the server calls back to the client (using an
idempotent remote procedure call) to ask the client for the client’s current sequence number. The
server then uses the returned sequence number to validate the request. Note then that for calls to
non-idempotent procedures (with input and output arguments that fit in a single packet), a total of
two message pairs will be exchanged between client and server for the simple case. Subsequent
calls between the same client and server will require just one message pair. Note that the extra
message pair in the first case could conceivably be eliminated if the server were willing to hold
onto client sequence number information for long enough to ensure that all duplicate requests had
been flushed from the network. We chose not to take this approach since any time interval we
considered long enough (e.g. one minute or more) seemed too long to oblige the server to hold
the information.

Also, for non-idempontent procedures, the server side saves and periodically retransmits the re-
sponse packet until the client side has acknowledged receipt of the response. If the server side
receives a retransmission of the request, it resends the saved response instead of re-executing the
call. The client side acknowledges the response either implicitly, by sending a new request, or
explicitly, by sending an acknowledgement packet. The protocol also handles the case in which
the server has executed the non-idempotent call but, because of network partitions or a server
crash, fails to send the response packet.

If a called procedure is idempotent, the protocol makes no guarantees about how many times the
procedure is executed. On idempotent requests, the server side does not save the results of the
operation once it has sent back the response packet. In addition, the client side is not required to
acknowledge the receipt of responses to idempotent requests.

8.2 Runtime

The NCS RPC runtime is written in portable C and uses the BSD Unix socket abstraction. (In
terms of the socket abstraction, it uses SOCK_DGRAM-style sockets.) This abstraction is intended
to mask the details of various protocol families so that one can write protocol-independent net-
working code. (A protocol family is a suite of related protocols; e.g. TCP and UDP are part of the

 13

DoD IP protocol family; PEP and SPP are part of the Xerox NS protocol family.) In practice,
however, the socket abstraction has to be extended in several ways to make it possible to write
truly protocol-independent code. We extended the socket abstraction via a set of operations im-
plemented in a user-mode subroutine library; the NCS runtime uses these extensions so that it can
be truly protocol-independent. Bringing up the NCS runtime on a new protocol family should not
require any changes to the NCS runtime proper. All that should be required is to add some
relatively trivial routines to the socket abstraction extension library.

NCS is careful about creating sockets. Sockets are a fairly scarce resource and tying lots of them
up for a long period is not a good idea. NCS keeps of small private pool of sockets. One is pulled
from the pool when a process makes a remote call. When the call completes, the socket is re-
turned to the pool. The pool need contain only one socket for the entire process if the system
supports only one thread of control per process (as is the case in standard Unix).

The use of the socket abstraction at all could be considered to be too much of a BSD-ism, thus
reducing the portability of the runtime. Fortunately, two factors argue against this point of view:
First, it appears that AT&T System V, Release 3 will support at least a sufficient subset of the
socket calls (layered on top of their own networking model). Second, even if the target of a port
doesn’t have anything resembling the socket interface, NCS use of the interface is fairly simple
and it wouldn’t be too hard to implement the BSD calls in terms of whatever the target system
supplies.

9. Future Directions

NCA and NCS represent the first step in a complete network computing environment. One of the
guiding goals in the development of NCA has been transparency. This has a number of aspects:
replication, failure, concurrency, location, and name transparency.

With replication transparency all copies of an object can be considered equivalent. The user of an
object cannot tell whether it consists of a single copy or many. The DRM provides replication
transparency in the case where some short-lived inconsistencies can be tolerated. Future versions
of NCA will include support for strongly consistent replication.

Location transparency allows users to access objects without specifying where the objects are.
Objects are free to be moved around the network to adapt to changing load conditions and the
availability of new hardware. The Location Broker provides the ability to find the location of
objects prior to their first use. We would like to be able to have objects move at any time during
program execution.

Concurrency transparency supports the illusion that a given client is the sole user of an object.
NCS addresses this partially through concurrent programming support which provides a simple
locking facility. In the future, we would like to address this, and to some degree, failure transpar-
ency, through the use of an object-oriented atomic transaction facility.

Failure transparency, i.e. the ability of components of a distributed system to fail and recover
transparently to their users, is largely a function of location and replication transparency. By
replicating objects, when a given replica fails another is available to takes its place. Location
transparency hides the switch from one replica to another from the user.

Neither NCA nor NCS address the issue of name transparency at this point. We anticipate build-
ing a general purpose name server in a future version of NCS. In addition, we intend to address a
higher-level form of naming: In many instances, it is more convenient to find an object by attrib-
utes rather than by a text name. An attribute broker will provide this ability. Thus, a client will be
able to query the attribute broker for a list of 26 page/sec laser printers rather than managing
the mapping between machine names and attributes itself.

Most of the focus in the NCA development so far has been on getting the basic model right. Once
the object-oriented model is in place, we feel that these higher level services will evolve naturally.
Had we started with a more traditional process-oriented model, the level of integration and trans-
parency we desire would be much more difficult to achieve.

 14

References

[Almes 83]
Guy T. Almes. Integration and distribution in the Eden system. Technical Report
83-01-02, Department of Computer Science, University of Washington, 1983.

[Birrell 84]
Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, II(1):39-59, 1984.

[Cohen 75]
Ellis Cohen and David Jefferson. Protection in the Hydra operating system. In Proceed-
ings of the Fifth Symposium on Operating Systems Principles, pages 141-160. ACM Spe-
cial Interest Group on Operating Systems, 1975.

[Goldberg 83]
Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[Lazowska 81]
Edward D. Lazowska, Henry M. Levy, Guy T. Almes, Michael J. Fischer, Robert J.
Fowler, and Stephen C. Vestal. The architecture of the Eden system. In Proceedings of
the Eighth Symposium on Operating Systems Principles, 148-159. ACM Special Interest
Group on Operating Systems, 1981.

[Leach 82]
Paul J. Leach, Bernard L. Stumpf, James A. Hamilton and Paul H. Levine. UIDs as
Internal Names in a Distributed File System. In Proceedings of the Symposium on Princi-
ples of Distributed Computing, 34-41. Association for Computing Machinery, 1982.

[Leach 83]
Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A. Hamilton, David L. Nelson,
and Bernard L. Stumpf. The architecture of an integrated local network. IEEE Journal
on Selected Areas in Communications, SAL-I(5):842-857, 1983.

[Oppen 83]
D. C. Oppen and Y. K. Dalal. The Clearinghouse: A decentralized agent for locating
named objects in a distributed environment. ACM Transactions on Office Information
Systems I(3):230-253, 1983.

[Stroustrup 86]
 Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[Sun 86]
 Sun Microsystems. Networking on the Sun workstation. Part no. 800-1324-03. 1986.

[Terry 84]
D. B. Terry, M. Painter, D. Riggle and S. Zhou. The Berkeley Internet Name Domain
Server. In Proceedings of the Usenix Association Summer Conference, 21-31. 1984.

[Wulf 75]
W. Wulf, R. Levin, C. Pierson. Overview of the Hydra operating system development.
Proceedings of the Fifth Symposium on Operating Systems Principles, pages 122-131.
ACM Special Interest Group on Operating Systems, 1975.

[Xerox 81]
Xerox Corporation. Xerox System Integration Bulletin, OPD B018112. 1981.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc. Network Computing

XNS is a trademark, and ETHERNET is a registered trademark of Xerox Corporation.

System, NCS, and DOMAIN/IX are trademarks of Apollo Computer Inc.
IBM is a registered trademark of Internation Business Machines Corporation.
UNIX is a registered trademark of AT&T

VAX is a registered trademark of Digital Equipment Corporation.

