LOCAL-AREA
NETWORKING

AT&T
System V
Training

Sun’s NFS
& AT&T’s RFS

SNA, SNADS, XNS,
TCP/IP (And More)
Defined

Inside Edge:
Alliant’s "Crayette” |

Practical Usenet,
UUCP Applications

THEME

AT&T’S RFS AND SUN’S NFS

A COMPARISON OF HETEROGENEQUS
DISTRIBUTED FILE SYSTEMS

Beyond the network cables and interface boards lies the
unchartered territory of heterogeneous distributed file
systems. Our authors discuss two possible solutions to the
problem of linking diverse machines and applications into
one transparent, distributed system.

BY MARK J. HATCH, MICHAEL KATZ, AND JIM REES

n today’s data-processing world,

system and product diversity

are commonplace. If you still
== doubt that, just take a look .at
the systems in daily use within your
own organization: centralized com-
puters (IBM), departmental comput-
ers (VAX), individual workstations,
and personal computers (IBM and
its.clones). This multivendor /multi-
machine scenario works well if the
work group is familiar with all the
different operating systems in-
volved; has the desktop space for
three terminals, and has applications
that are built to understand multiple
file system formats. In reality, work
groups and work group applications
see little or no integration. Without
standard operating system and file
system access, this diversity, and
the productivity drain it creates, will
continue.

What’s needed, therefore, is a
standard operating system (the Unix
operating system!) that, through
standard networking extensions,
could link all the diverse machines
and applications into one contiguous,
transparent, distributed system.
Recently, two vendors have pro-
posed separate solutions to this
problem; both solutions are inte-
grated in with the Unix operating en-
vironment. This article reviews
some of the concepts of a distributed
system and evaluates how these two
new proposals meet the needs of
such an environment.

40 UNIX/WORLD

The goal of a distributed file
system is to provide an illusion of a
single file system while distributing
access to this data across a network.
To be successful at maintaining this
illusion, a distributed Unix file sys-
tem requires fransparency (both data
format and access), reliability (data
integrity and network error recov-
ery), concurrency control (some
discipline to control simultaneous
updates by multiple processes),
security (of data and computing re-
sources), and Unix file system se-
mantics (no difference between local
and remote files).

The first truly distributed sys-
tems that provided transparent file
access supported only one vendor’s
hardware and software (see Figure
1). These networks are called ho-
mogeneous . Creating ahomogeneous
distributed environment is easier
than creating a mixed environment
because a single vendor has com-
plete control over both the hardware
and software. This control allows
vendors of distributed systems to
solve many of the problems associ-
ated with distributed processing, in-
cluding reliability, transparency, and
security. Controlling the complete
environment also allows the vendor
to select the combination of hard-
ware and software that provides su-
perior performance. One example of
a homogeneous network for en-
gineering applications is the Apollo
Domain system, which networks en-

Reprinted with permission from UNIX/WORLD Magazine.

gineering workstations that trans-
parently share the same file system
and access multiple heterogeneous
systems.

The one problem with many ho-
mogeneous networks is that they do
not provide transparent file access
across the diverse set of computers
found in today’s data processing en-
vironment (see Figure 1). Conse-
quently, Apollo and other vendors
have been extending their systems
to support heterogeneous networks.
Creating heterogeneous (or mixed)
file system that can perform and
function well is a difficult task. Lack
of cooperation between vendors of-
ten leaves network designers with
no choice but to use certain commu-
nication protocols that are common
to all machines but that can lack suf-
ficient functionality and perfor-
mance. Many users of Unix systems
have direct experience with one
such networking compromise,
TCP/IP. Originally designed as a long-
haul protocol over unreliable data
links, TCP/IP provides sufficient er-
ror checking to ensure reliable com-
munications. Many feel, however,
that the same features that make
TCP/IP ideal for long-haul commu-
nications put it at a disadvantage on
more reliable local-area networks
that demand high throughput.

Recently, two solutions to het-
erogeneous file systems have been
proposed for the Unix system soft-
ware community. The Network File

DECEMBER 1985

© 1985 Tech Valley Publication. All rights reserved.

THEME

Homogeneous vs. Heterogeneous File Systems

Homogeneous:

Heterogeneous:

FIGURE 1: HETEROGENEOUS VS HOMOGENEOQOUS FILE

SYSTEMS

BEFORE:
NETWORK

usr treel tree2 usr

myfile foo bar

AFTER:

NETWORK

usr treel tree2 usr

myfile foo bar

treed tree2

Virtually

%

FIGURE 2: CREATING A TRANSPARENT FILE SYSTEM

UNIX/WORLD 41

System (NFS) from Sun Microsys-
tems is the first of the two systems
to be publicly discussed. In Sun’s
original announcement of NFs, it
stated its intention to make NFS an
industry standard. Sun has released
protocol specifications and licensed
its source code in support of this
goal. The more recent hetero-
geneous file system is from AT&T In-
formation Systems and is officially
called Remote File Sharing (RFS).
RFS was demonstrated at the June
1985 Usenix conference in Portland,
Ore. The recently signed joint
agreement between AT&T and Sun to
work toward merging 4.2BSD into
System V, failed to explicitly address
heterogeneous networking. Mean-
while, work continues on RFS within
Bell Laboratories, and on NFs within
Sun Microsystems. As of yet, AT&T
has not officially announced the RFS
product. This article investigates
these two systems, as both can con-
tribute to solving the distributed file
system problems many users face.

DESIGN GOALS
OF AT&T RFS

One of the primary goals of AT&T’s
RFS is to provide transparency be-
tween remote and local file systems.
Another goal is to provide sufficient
security mechanisms to allow local
system administrators to assure the
confidentiality and integrity of their
own data, and it also aims to maintain
Unix file system semantics and con-
current file access.

RFS SYSTEM
ARCHITECTURE

When a machine is brought up on an
RFS network, it advertises the avail-
ability of its file system using the
adv command and sends a message
to a central machine in the work
group. This central machine runs a
program called the name service;
which keeps a record of remote file
systems available over the network.

DECEMREER 1985

THEME

Systems that make files available to

other machines are called servers.
The mount command allows
administrators to make a remote file
system available for use locally. Like
the adv command, this command is
usually run at the time the machine is
booted. When a remote file system
is mounted, the local machine sets
up a network connection to the re-
mote machine. Computers that use
files residing elsewhere on the net-
work are referred to as clients. Ad-
ministrators could achieve the file
system displayed in Figure 2 by is-
suing the commands in Figure 3.

SERVER big_disk:
adv big_diskl /treel
adv big_disk2 /tree2

CLIENT data_user:
mount -d big—disk:/treel /tree!
mount -d big—disk:/tree2 /iree2

Figure 3: Commands for Mounting
Files in an RFS Network.

The RFS server maintains infor-
mation about all remote systems for
which it has mounted file systems or
open files. It keeps a count of how
many local and remote programs
have a particular file open, and it en-
sures that data written from one
program in a single write request are
not intermingled with data from an-
other program on a different ma-
chine. This type of implementation is
know as a stafefull implementation.

RFS uses the streams 1/0 (input/
output) system, developed at Bell
Laboratories for the Unix Time-
Sharing System, Eighth Edition, for
intermachine communications. This
system allows the implementors to
plug in any one of several different
network protocols and makes RFS in-
dependent of any one kind of net-
work hardware or protocol. Below
the streams level, AT&T uses a
lower-level protocol to ensure that

42 UNIX/WORLD

data passed between different
vendor machines conform to a com-
mon format. A block diagram of the
RFS architecture is provided in Fig-
ure 4A.

RFS administrators can choose
from a variety of ways to restrict
access to the files on any machine.
They can declare that all remote ac-
cess will use the privileges of a given
local user, —for example, the guest
account. They can choose to disal-
low selected users, such as the
root account; or they can provide a
table of mappings from remote to lo-
cal user and group IDs. Any of these
options can be specified separately
for each remote machine.

STRENGTHS AND
WEAKNESSES OF THE
AT&T APPROACH

A major advantage of RFs is that it
maintains the Unix file system se-
mantics. This means that, remote
and local operations behave in ex-
actly the same way. For example, a
server knows how many times a file
has been opened, so it can safely
decide when the file can be deleted
after an wunlink operation. If the
server did not do this, the file could
be deleted while another user was
using it.

To simplify keeping a consistent
view of all files everywhere in the
network, RFS does not cache parts of
files on client machines. This means
that there is always only one version
of a file, the one kept by the server.
Currently this means, that every 1/0
operation must go over the network
to the server, which can slow the
system down. This could be a big
problem if the network is consid-
erably slower than the local disk
drives or if the server is heavily
loaded. Sun’s NFS approaches this
problem differently by caching por-
tions of the file during read oper-
ations and performing direct writes
to remote devices during write oper-

ations. The file block caching by NFs
improves network performance but
at the cost of allowing inconsistent
views of data to exist on a network.

Unlike Sun’s NFS, RFS allows us-
ers to access devices across the net-
work, including all 1/0 control oper-
ations. This would be difficult to do
without a statefull server because
most devices need to keep track of
how many times they have been
opened, which is only possible if the
server maintains this information.
Also, in contrast to Sun’s NFs, the
version of RFS demonstrated at Use-
nix provided concurrency control.
Concurrency control is critical in or-
der to maintain data integrity when
multiple processes are updating the
same file.

The name service program is a
weak point in the RFS network. If this
machine goes down, none of the ma-
chines in the network can advertise
their file systems to remote ma-
chines or mount remote file sys-
tems. To help solve this problem,
system administrators can designate
a secondary system for name service
to take over if the first fails. The
switch to the secondary system
server is done automatically so us-
ers are not normally even aware that
a failure has taken place. Note that a
failure in name service has no effect
on file systems that are already
mounted; it only prevents further
mounts.

The flexibility available in map-

ping remote user and group IDs to

local ones can be useful to maintain
security in a network of machines
that are not all under the control of a
single administrator. A large com-
pany might want to allow unlimited
access to anyone within a single de-
partment but only allow guest access
from machines in a different depart-
ment. Although RFS’ administrative
tools make this an easy job, it re-
quires additional administrative ef-
fort that would not be necessary if a
single, networkwide password file
existed.

DECEMBER 1985

4B NFS ARCHITECTURE
CLIENT SERVER
EXCTE
-
[unix F; System| | NF*E"- | [NFS] [uNiX File System]

etwork Protocols

RPC & XDR

iE)

FIGURE 4: COMPARATIVE ARCHITECTURES

~ The lack of a networkwide view
of the file system is an important
weakness of RFS. The ability to
mount remote file systems any-
where on the local tree is a powerful
capability, but unless it is strictly ad-
ministered, one machine’s file sys-
tem could look completely different
from another machine’s, creating
confusion for users and errors in
programs and shell scripts. This
problem also exists with NFs. Other
network file systems, such as Apo-
llo’s Domain and the Newcastle Con-
nection, solve this problem by pro-
viding a consistent naming space
through the mounting of all file sys-
tems at a network root and including
the computer system name in the
pathname of all files. On these sys-
tems, a full pathname identifies the

44 UNIX/WORLD

same file, regardless of the location
of the user and his or her current
task machine in the network.

A final weakness of RFS is avail-
ability. RFS is still an unannounced
product and has been demonstrated
only at trade shows. Depending on
internal decisions by AT&T, it might
never be officially released and inte-
grated into System V.

DESIGN GOALS
OF SUN'S NFS

The design goals of Sun’s NFS are

similar to those of AT&T’s RFS and
include transparent file access, re-
liability in the face of imperfect net-
works and machines, and mainte-
nance of Unix file system semantics.
NFS, however, attempts to achieve

THEME
the more ambitious goal of provid-
4A RFS ARCHITECTURE ing transparent file access among
machines that might be running
CLIENT SERVER operating systems other than Unix
o
T NFS SYSTEM
¥ % ARCHITECTURE
|uNix File System| | Streams | | Streams] [uNIX File System|

The user interface of NFS is similar
to that of AT&T’s RFS. Servers con-
trolling files that other network
users might want to access is-
sue exportfs commands. The
exportfs command can make the
whole file system of the server or
only portions of that file system
available to other users. Clients can
gain access to these exported file
systems by issuing the familiar Unix
operating system command mount.
Referring to Figure 2, users of NFS
would achieve the same network file
system as the AT&T example through
the use of the commands in Figure 5.

Figure 4B shows a block dia-
gram of NFS. Under a pure Unix
operating system, any file access re-
sults in the system call interface
translating the external filename
(known to the user) into the internal
identification (known to the Unix
operating system kernel). Unfor-
tunately, the Unix operating system
provides no guarantee that the inter-
nal identification is unique within a
local-area network. Consequently,
Sun has altered the Unix operating
system kernel to support a wvirtual
file system (VFS) that can uniquely
identify and locate both local and
remote files. VFS provides a replace-
ment for the internal primitives

SERVER big_disk:
exportfs /treel
exportfs /ireed

CLIENT data_user:
mount -t nfs big—disk:/treel /ireel
mount -t nfs big_disk:/tree2 /tree2

Figure 5: Commands for Mounting
Files in an NFS Network.

DECEMBER 1985

THEME

DATA INTEGRITY
mounts if it fails.

CRITERIA AT&T RFS SUN NFS
Supports multi-vendor HW Supports multi-vendor HW
TRANSPARENCY
Supports only UNIX OS Supports non-UNIX 0S
Transparent file access Transparent file access
Jransparent dovicg access
RELIABILITY/ Name service can provide No single failure point

single failure point for new
mounts. No impact on existing

Open files cannot be deleted.

Open files can be deleted.

CONCURRENCY File locking provided.

CONTROL

No file locking provided.

SECURITY
by userid.

Provides tools to limit access

MNetwork security degenerates
to that of least secure system

UNIX SEMANTICS| Adheres to standard UNIX
operating system file semanticq

Does not completely adhere to
standard UNIX operating
system file semantics during
multiple semantics.

FIGURE 6: DISTRIBUTED FILE SYSTEMS SUMMARY

(open, close, create, and so
on) that the kernel normally uses to
access a file system. If the file is
local to a system, then VFs uses the
standard Unix file system to access
the local file system on a device con-
nected to the machine. If the file is
located on a remote system, how-
ever, then VFs uses the NFs protocol
to access and manipulate the file.

The NFs protocol is a set of
primitives that define the operations
that can be made on a distributed file
system. In contrast to AT&T’S RFS,
NFS is a stateless protocol. This im-
plies that servers under NFS do not
keep track of any past requests—
for example, a server does not even
know which files are currently
opened by a client.

NFS uses a Remote Procedure
Call (RPC) mechanism to commu-
nicate between machines. RPCS can
be thought of as normal procedure/
subroutine calls that just happen to
get executed on another machine.
When an NrFS primitive (such as
create) is invoked by a client, the
corresponding NFS primitive is exe-
cuted on the server side. The prim-
itive on the server machine accesses
the file (through the vFs of the

46 UNIX/WORLD

server computer) and performs the
operation requested by the client.
The NFs protocol and RPC are
implemented in terms of a lower-
level protocol known as the External
Data Representation (XDR). XDR sim-
ply specifies the byte ordering, size,
and alignment of basic data types
(integer, string, boolean, and so on)
in a machine-independent fashion.
XDR ensures that data passed be-
tween different machines corre-
sponds to a common format.

STRENGTHS AND
WEAKNESSES OF THE NFS
APPROACH

The Nrs approach to network file
systems provides several advan-
tages, including error recovery, sys-
tem independence, and availability.
NFs makes error recovery quick and
easy by eliminating the saving of
state information that tremendously
complicates error recovery. Unlike
RFS, users may not notice intermit-
tent network failures because no
state information is saved or lost by
a failure.

NFS is potentially superior to
AT&T’s RFS by defining a standard

vendor and operating-system-inde-
pendent distributed file system. If
accepted, this standard would allow
users to share data more trans-
parently among many different ma-
chines. For NFS to become a stan-
dard, however, it must acquire
support from either an industry stan-
dard committee or a major vendor,
such as IBM, DEC or AT&T. Without
this type of support, we consider it
unlikely that NFs will be accepted as
areal industry standard. Perhaps the
most important advantage of NFs is
its' availability. Today, NFS is sup-
ported on Sun, Pyramid, Gould,
Celerity, and Sequent systems.
Additionally, Mt. Xinu and Lachman
Associates have announced support
for NFS on DEC VAX systems.

A weakness common to both
NFS and AT&T's RFS is that the default
is to not share, which limits their ef-
fective transparency. To share files,
a server must explicitly export its
file system and a client must mount
the same file system. On small net-
works, this probably will not pose a
major problem because the physical
number of machines is small. As a
network gets larger, however, the
default effectively becomes to not
share because of the administrative
effort to maintain exporting and
mounting of all file systems by all
machines. Other systems have
solved this problem by making the
network file system permanently
mounted and thus transparent for all
users.

The failure of NFS to maintain
Unix operating system semantics for
remote files is a critical weakness.
For example, guaranteed append
mode and Berkeley advisory locks
are not supported under NFs for re-
mote access, Additionally, a file be-
ing used by one user can be deleted
by a second user. NFS’ failure to ad-
here to the Unix file system seman-
tics prevents users from trusting a
shared file. This results in users cre-
ating their own private copies of files
and not taking advantage of the shar-

DECEMBER 1985

THEME

ing capabilities of a network file sys-
tem. In fairness, it must also be re-
membered that NFS was designed to
run in a multi-operating system
environment—a potential trouble
area if Unix operating system se-
mantics had been maintained.
However, Sun said it plans ancillary
services providing file locking in a
future release.

System security can be weak-
ened by the use of NFS. Because ev-
ery Unix system is a sovereign sys-
tem, all systems can have their own
list of superusers (root), as well as
potentially different awareness/con-
cern levels for security. Sun’s sys-
tem severely limits the rights of su-
perusers across a network to limit
potential abuses. However, super-
users can still gain access to re-
stricted files on remote machines by
using the SU command to change
their effective uid to that of the
owner of a file on a remote system.
A new facility, called the Yellow
Pages, will provide the ability to
define one password file for all sys-
tems in a network. It does not com-
pletely solve the problem, however,
because it is a voluntary mechanism
and the least secure systems might
choose not to cooperate. The lack of
cooperation by computers on a net-
work can effectively reduce the se-
curity of NFS to be no better than the
security of the least secure system.

CONCLUSION

Figure 6 provides a summary of the
differences between Sun’s NFS and
AT&T's RFS, listing side by side how
each proposed solution meets our
criteria for heterogeneous distrib-
uted file systems.

The real question may be this:
Will heterogeneous file systems re-
place the current homogeneous
ones? In the near future, the answer
is probably “no.” It is likely that ven-
dors of homogeneous file systems
will complement their present prod-
uct offerings with “standard” hetero-

UNIX/WORLD 47

geneous offerings. This gives users
the best of all both possible worlds:
high performance, high functionality
for communicating within a work-
group of similar machines, and file
access transparency with adequate
performance for files located outside
the work group. O

REFERENCES

DOMAIN Architecture: A Technical
Overview. Apollo Computer Inc,, April
1985.

Presotto, D. L., and D. M. Ritchie. “In-
terprocess Communication in the Eighth
Edition Unix System,” Usenix Confer-
ence Proceedings, June 1985.

Ritchie, D. M. “A Stream Input-Output
System,” AT&T Bell Laboratories Tech-
nical Journal, 63(8) (October 1984).

Sandberg, Russel, David Goldberg, et
al. “Design and Implementation of the
Sun Network File System,” Usenix Con-
Serence Proceedings, June 1985.

Weinberger, P. J. “The Version 8 Net-
work File System,” Usenix Conference
Proceedings, June 1984.

Mark J. Halch is currently the Domain /
IX Marketing Product Manager for
Apollo Computer. Prior to working for
Apollo, he was a manager of system pro-
gramming groups for both IBM/VM 370
and Unix operating systems. Mr. Haitch
has a BA. in Economics and Compuier
Science and an M.S. in Electrical En-
gineering and Computer Science from the
University of California at Berkeley.
Recently, he received a M.B.A. from Bos-
ton University.

Michael Katz is the Senior Product Mar-
keting Manager for Heterogeneous Net-
working at Apollo Computer. In his six
years of networking and telecommuni-
cations product experience, he has worked
both as a project engineer and product
manager for companies such as Wang
Labs, Technical Communications Corp.,
and Adage.

Jim Rees works in the Heterogeneous Do-
main Networking Group at Apollo Com-
puter. Previously, he worked in the Unix
Operating System Group, being responsi-

ble for the port of major portions of Ber-
keley 4.2 to the Apollo Domain system.
Before joining Apollo, he was a staff pro-
grammer for the Eden Project at the Uni-
versity of Washington Computer Science
Department. Mr. Rees has a B.S. in E lec-
trical Engineering from the University of
Michigan.

This article represents the apinions of the au-
thors and does not necessarily represent the
views of their employer, Apollo Computer Inc.

GLOSSARY OF TERMS

clients: Clients are computers that
rely on data stored by other com-
puters on a network.

External Data Representation: A
low-level protocol used by NFs that
defines the format of various data
types. This protocol ensures that
data transferred among machines
isgdunderstandable at the receiving
side.

heterogeneous network: A net-
work made up of machines from
multiple vendors.

homogeneous network: A network
in which all machines are from one
vendor.

name service: A program running
on a machine within AT&T’s RFS that
provides a central repository for
tracking file systems that have
been advertised for use by clients.

Remote Procedure Call: A mech-
anism by which a program running
on one machine can invoke a pro-
cedure on a second machine.

servers: Servers are computers
that provide disk storage for pro-
grams and data to other computers
on the network.

stateless: Indicates that the proto-
col does not save any information
regarding file accesses between in-
vocations. For example, a stateless
file system would not save a table
of open files. Recovery is easier un-
der stateless file systems. For con-
current defined file access, how-
ever, state information must be
saved by either the server or the
application.

DECEMBER 1985

